7 resultados para dispersal

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de dout. em Ecologia, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2005

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme conditions of coastal lagoons could directly modify the genetic patterns of species. The aim of this work was to investigate the influence of environmental conditions and small scale dispersal patterns on the phosphoglucose isomerase (PGI*) genetic variability of Cerastoderma glaucum from the Mar Menor coastal lagoon. For this purpose, 284 cockles were collected around the perimeter of the lagoon. Vertical polyacrylamide gel electrophoresis was used to scan for PGI* polymorphisms, giving a total of seven alleles. The spatial genetic distribution of the PGI* variability, which seems to be marked by the main circulation in the lagoon, discriminates four hydrological basins. In the central basin, a gradient of allelic composition reflects the circulation forced by the dominant winds and the main channel communicated to the open sea. This result is well supported by the salinity GAM model that defines this gradient. The other three basins are defined by the distribution of fine sand in a more complex model that tries to explain the isolation of the three sites localized inside these basins. The southern, western and northern basins show the lowest degree of interconnection and are considered the most confined areas of the Mar Menor lagoon. This situation agrees with the confinement theory for benthic assemblages in the lagoon. The greater degree of differentiation seen in the Isla del Ciervo population is probably due to recent human intervention on the nearby Marchamalo channel, which has been drained in recent years thus altering the influence of the Mediterranean Sea on the southern basin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explored the relationships between perturbation-driven population decline and genetic/genotypic structure in the clonal seagrass Posidonia oceanica, subject to intensive meadow regression around four Mediterranean fish-farms, using seven specific microsatellites. Two meadows were randomly sampled (40 shoots) within 1,600 m2 at each site: the “impacted” station, 5–200 m from fish cages, and the “control” station, around 1,000 m downstream further away (considered a proxy of the pre-impact genetic structure at the site). Clonal richness (R), Simpson genotypic diversity (D*) and clonal sub-range (CR) were highly variable among sites. Nevertheless, the maximum distance at which clonal dispersal was detected, indicated by CR, was higher at impacted stations than at the respective control station (paired t-test: P < 0.05, N = 4). The mean number of alleles (Â) and the presence of rare alleles ( r) decreased at impacted stations (paired t-test: P < 0.05, and P < 0.02, respectively, N = 4). At a given perturbation level (quantified by the organic and nutrient loads), shoot mortality at the impacted stations significantly decreased with CR at control stations (R 2 = 0.86, P < 0.05). Seagrass mortality also increased with  (R 2 = 0.81, P < 0.10), R (R 2 = 0.96, P < 0.05) and D* (R 2 = 0.99, P < 0.01) at the control stations, probably because of the negative correlation between those parameters and CR. Therefore, the effects of clonal size structure on meadow resistance could play an important role on meadow survival. Large genotypes of P. oceanica meadows thus seem to resist better to fish farm-derived impacts than little ones. Clonal integration, foraging advantage or other size-related fitness traits could account for this effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study attempts to implement a hydrodynamic operational model which can ultimately be used for projecting oil spill dispersal patterns and also sewage, pollution and can also be used in wave forecasting. A two layer nested model was created using MOHID Water, which is powerful ocean modelling software. The first layer (father) is used to impose the boundary conditions for the second layer (son). This was repeated for two different wind dominant regimes, Easterly and Westerly winds respectively. A qualitative comparison was done between measured tidal data and the tidal output. Sea surface temperature was also qualitatively compared with the model’s results. The results from both simulations were analysed and compared to historical literature. The comparison was done at the surface layer, 100 metre depth and at 800m depth. In the surface layer the first simulation generated an upwelling event near Cape St. Vincent and within the Algarve. The second simulation generated a non-upwelling event within which the surface was flow reversed and the warm water mass was along the Algarve coastline and evening turning clockwise around Cape St. Vincent. At the 100 metre depth for both simulations, velocity vortexes were observed near Cape St. Vincent travelling northerly and southerly at various instances. At 800metre depth a strong oceanic flow was observed moving north westerly along the continental shelf.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis revealed the most importance factors shaping the distribution, abundance and genetic diversity of four marine foundation species. Environmental conditions, particularly sea temperatures, nutrient availability and ocean waves, played a primary role in shaping the spatial distribution and abundance of populations, acting on scales varying from tens of meters to hundreds of kilometres. Furthermore, the use of Species Distribution Models (SDMs) with biological records of occurrence and high-resolution oceanographic data, allowed predicting species distributions across time. This approach highlighted the role of climate change, particularly when extreme temperatures prevailed during glacial and interglacial periods. These results, when combined with mtDNA and microsatellite genetic variation of populations allowed inferring for the influence of past range dynamics in the genetic diversity and structure of populations. For instance, the Last Glacial Maximum produced important shifts in species ranges, leaving obvious signatures of higher genetic diversities in regions where populations persisted (i.e., refugia). However, it was found that a species’ genetic pool is shaped by regions of persistence, adjacent to others experiencing expansions and contractions. Contradicting expectations, refugia seem to play a minor role on the re(colonization) process of previously eroded populations. In addition, the available habitat area for expanding populations and the inherent mechanisms of species dispersal in occupying available habitats were also found to be fundamental in shaping the distributions of genetic diversity. However, results suggest that the high levels of genetic diversity in some populations do not rule out that they may have experienced strong genetic erosion in the past, a process here named shifting genetic baselines. Furthermore, this thesis predicted an ongoing retraction at the rear edges and extinctions of unique genetic lineages, which will impoverish the global gene pool, strongly shifting the genetic baselines in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências do Mar, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências do Mar, da Terra e do Ambiente, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015