7 resultados para bone morphogenetic protein 15

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de dout. em Química, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2002

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento, Biologia Molecular, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2001

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de dout., Biologia (Biologia Molecular), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of calcified tissues is a defining feature in vertebrate evolution. Investigating the evolution of proteins involved in tissue calcification should help elucidate how calcified tissues have evolved. The purpose of this study was to collect and compare sequences of matrix and bone γ-carboxyglutamic acid proteins (MGP and BGP, respectively) to identify common features and determine the evolutionary relationship between MGP and BGP. Thirteen cDNAs and genes were cloned using standard methods or reconstructed through the use of comparative genomics and data mining. These sequences were compared with available annotated sequences (a total of 48 complete or nearly complete sequences, 28 BGPs and 20 MGPs) have been identified across 32 different species (representing most classes of vertebrates), and evolutionarily conserved features in both MGP and BGP were analyzed using bioinformatic tools and the Tree-Puzzle software. We propose that: 1) MGP and BGP genes originated from two genome duplications that occurred around 500 and 400 million years ago before jawless and jawed fish evolved, respectively; 2) MGP appeared first concomitantly with the emergence of cartilaginous structures, and BGP appeared thereafter along with bony structures; and 3) BGP derives from MGP. We also propose a highly specific pattern definition for the Gla domain of BGP and MGP. Previous Section Next Section BGP1 (bone Gla protein or osteocalcin) and MGP (matrix Gla protein) belong to the growing family of vitamin K-dependent (VKD) proteins, the members of which are involved in a broad range of biological functions such as skeletogenesis and bone maintenance (BGP and MGP), hemostasis (prothrombin, clotting factors VII, IX, and X, and proteins C, S, and Z), growth control (gas6), and potentially signal transduction (proline-rich Gla proteins 1 and 2). VKD proteins are characterized by the presence of several Gla residues resulting from the post-translational vitamin K-dependent γ-carboxylation of specific glutamates, through which they can bind to calcium-containing mineral such as hydroxyapatite. To date, VKD proteins have only been clearly identified in vertebrates (1) although the presence of a γ-glutamyl carboxylase has been reported in the fruit fly Drosophila melanogaster (2) and in marine snails belonging to the genus Conus (3). Gla residues have also been found in neuropeptides from Conus venoms (4), suggesting a wider prevalence of γ-carboxylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor β (TGFβ) superfamily with a central role in bone formation and mineralization. BMP2, a founding member of this family, has demonstrated remarkable osteogenic properties and is clinically used to promote bone repair and fracture healing. Lack of basic data on factors regulating BMP2 expression and activity have hampered a better understanding of its role in bone formation and bone-related diseases. The objective of this work was to collect new functional data and determine spatiotemporal expression patterns in a fish system aiming towards a better understanding of BMP2 function and regulation. Transcriptional and post-transcriptional regulation of gilthead seabream BMP2 gene was inferred from luciferase reporter systems. Several bone- and cartilage-related transcription factors (e.g. RUNX3, MEF2c, SOX9 and ETS1) were found to regulate BMP2 transcription, while microRNA 20a was shown to affect stability of the BMP2 transcript and thus the mineralogenic capacity of fish bone-derived host cells. The regulation of BMP2 activity through an interaction with the matrix Gla protein (MGP) was investigated in vitro using BMP responsive elements (BRE) coupled to luciferase reporter gene. Although we demonstrated the functionality of the experimental system in a fish cell line and the activation of BMP signaling pathway by seabream BMP2, no conclusive evidence could be collected on a possible interaction beween MGP and BMP2. The evolutionary relationship among the members of BMP2/4/16 subfamily was inferred from taxonomic and phylogenetic analyses. BMP16 diverged prior to BMP2 and BMP4 and should be the result of an ancient genome duplication that occurred early in vertebrate evolution. Structural and functional data suggested that all three proteins are effectors of the BMP signaling pathway, but expression data revealed different spatiotemporal patterns in teleost fish suggesting distinct mechanisms of regulation. In this work, through the collection of novel data, we provide additional insight into the regulation, the structure and the phylogenetic relationship of BMP2 and its closely related family members.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the various proteins which are induced when human cells are are treatened with interferon, a predominant protein of unknown function, with molecular mass 56 kDa, has been observed. With the aim of exploring the molecular basis of the regulation of this protein and of its mRNA, in order to understand its biological functionand its possible contribution to the various antiviral and non-antiviral actions exerted by interferons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gla-rich protein (GRP) is a vitamin K-dependent protein related to bone and cartilage recently described. This protein is characterized by a large number of Gla (γ-carboxyglutamic acid) residues being the protein with the highest Gla content of any known protein. It was found in a widely variety of tissues but highest levels was found in skeletal and cartilaginous tissues. This small secreted protein was also expressed and accumulated in soft tissues and it was clearly associated with calcification pathologies in the same tissues. Although the biological importance of GRP remains to be elucidated, it was suggested a physiological role in cartilage development and calcification process during vertebrate skeleton formation. Using zebrafish, an accepted model to study skeletal development, we have described two grp paralog genes, grp1 and grp2, which exhibited distinct patterns of expression, suggesting different regulatory pathways for each gene. Gene synteny analysis showed that grp2 gene is more closely related to tetrapod grp, although grp1 gene was proposed to be the vertebrate ortholog by sequence comparison. In addition, we identified a functional promoter of grp2 gene and using a functional approach we confirmed the involvement of transcription factors from Sox family (Sox9b and Sox10) in the regulation of grp2 expression. In an effort to provide more information about the function of grp isoforms, we generated two zebrafish transgenic lines capable to overexpress conditionally grp genes and possible roles in the skeleton development were studied. To better understand GRP function a mammalian system was used and the analysis of knockout mice showed that GRP is involved in chondrocyte maturation and the absence of GRP is associated to proteoglycans loss in calcified articular cartilage. In addition, we detected differences in chondrogenesis markers in articular chondrocyte primary culture. Overall, our data suggest a main role for GRP on chondrocyte differentiation.