3 resultados para beach access
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The purpose of this study on beach quality assessment and management was to evaluate the quality of five beaches in the Algarve Sotavento region of Portugal and to identify beach users’ preferences and priorities regarding their visit to a beach. The Algarve is one of the country’s most internationally known regions and it is generally perceived as a major tourist destination. Because of the increasing level of tourists, there is a specific need to address beach quality, as overcrowding can result in excessive litter, reduce water quality and consequently reduce the socio-economic value of the area. The main methodology for the evaluation of the beach quality in this pilot project was the Bathing Area Registration and Evaluation framework (BARE), which recognizes five beach types (rural, remote, resort, urban and village) through five main priority issues of concern to beach users (water quality, scenery, litter, safety, facilities) and evaluates the beach quality, ranging from one (low) to five (high) stars. After overall bathing area classification, Quarteira-Vilamoura, Ilha do Farol, Ilha Deserta and Ilha da Armona received three-star rating and Quinta do Lago site obtained a one-star rating. The quantitative research data on beach users’ preferences and priorities was obtained through administration of 50 questionnaires per beach and showed that beach users at all sites expressed the need for improved cleanliness, safety and facilities on the beach. The BARE framework, together with the questionnaire surveys, allowed the identification of management priorities required to improve the quality of individual beaches and therefore increase income from tourism.
Resumo:
This thesis contributes to the advancement of Fiber-Wireless (FiWi) access technologies, through the development of algorithms for resource allocation and energy efficient routing. FiWi access networks use both optical and wireless/cellular technologies to provide high bandwidth and ubiquity, required by users and current high demanding services. FiWi access technologies are divided in two parts. In one of the parts, fiber is brought from the central office to near the users, while in the other part wireless routers or base stations take over and provide Internet access to users. Many technologies can be used at both the optical and wireless parts, which lead to different integration and optimization problems to be solved. In this thesis, the focus will be on FiWi access networks that use a passive optical network at the optical section and a wireless mesh network at the wireless section. In such networks, two important aspects that influence network performance are: allocation of resources and traffic routing throughout the mesh section. In this thesis, both problems are addressed. A fair bandwidth allocation algorithm is developed, which provides fairness in terms of bandwidth and in terms of experienced delays among all users. As for routing, an energy efficient routing algorithm is proposed that optimizes sleeping and productive periods throughout the wireless and optical sections. To develop the stated algorithms, game theory and networks formation theory were used. These are powerful mathematical tools that can be used to solve problems involving agents with conflicting interests. Since, usually, these tools are not common knowledge, a brief survey on game theory and network formation theory is provided to explain the concepts that are used throughout the thesis. As such, this thesis also serves as a showcase on the use of game theory and network formation theory to develop new algorithms.
Resumo:
The recent remarkable growth in bandwidth of both wired optical and wireless access networks supports a burst of new high bandwidth Internet applications such as: peer-topeer file sharing, cloud storage, on-line gaming, video streaming, etc. Within this scenario, the convergence of fixed and wireless access networks offers significant opportunities for network operators to satisfy user demands, and simultaneously reduce the cost of implementing and running separated wireless and wired networks. The integration of wired and wireless network can be accomplished within several scenarios and at several levels. In this thesis we will focus on converged radio over fiber architectures, particularly on two application scenarios: converged optical 60 GHz wireless networks and wireless overlay backhauling over bidirectional colorless wavelength division multiplexing passive optical networks (WDM-PONs). In the first application scenario, optical 60 GHz signal generation using external modulation of an optical carrier by means of lithium niobate (LiNbO3) Mach- Zehnder modulators (MZM) is considered. The performance of different optical modulation techniques, robust against fiber dispersion is assessed and dispersion mitigation strategies are identified. The study is extended to 60 GHz carriers digitally modulated with data and to systems employing subcarrier multiplexed (SCM) mm-wave channels. In the second application scenario, the performance of WDM-PONs employing reflective semiconductor optical amplifiers (RSOAs), transmitting an overlay orthogonal frequency-division multiplexing (OFDM) wireless signal is assessed analytically and experimentally, with the relevant system impairments being identified. It is demonstrated that the intermodulation due to the beating of the baseband signal and wireless signal at the receiver can seriously impair the wireless channel. Performance degradation of the wireless channel caused by the RSOA gain modulation owing to the downstream baseband data is also assessed, and system design guidelines are provided.