23 resultados para Vacâncias de oxigênio
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015
Resumo:
O oxigénio é um elemento necessário à sobrevivência da maioria dos seres vivos. Contudo, este pode revelar-se tóxico, provocando a oxidação e a destruição celular. Em consequência desta oxidação formam–se, a partir do oxigénio molecular (O2), grupos de átomos extremamente reactivos – os radicais livres. A oxidação, tanto dos tecidos animais como dos tecidos vegetais, pode ocorrer tanto como resultado do simples metabolismo celular aeróbio formando os designados radicais livres endógenos, como também pelas agressões externas ao organismo que levam à formação dos radicais livres exógenos (Plummer, 1989).
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
Tese dout., Ecologia das populações, Universidade do Algarve, 2007
Resumo:
Dissertação mest., Biotecnologia, Universidade do Algarve, 2010
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências do Mar e do Ambiente, Universidade do Algarve, 2007
Resumo:
Tese dout., Ciências e Tecnologias do Ambiente, 2009, Universidade do Algarve
Resumo:
Dissertação de mest., Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010
Resumo:
Dissertação de mest., Tecnologia de Alimentos, Instituto Superior de Engenharia, Univ. do Algarve, 2012
Resumo:
Relatório de estágio da licenciatura, Bioquímica, Faculdade de Ciência e Tecnologia da Universidade do Algarve, 2007
Resumo:
We report the exploration of some unique metabolic pathways in Perkinsus olseni a marine protist parasite, responsible to significant mortalities in mollusks, especially in bivalves all around the world. In Algarve, south of Portugal carpet shell clam Ruditapes decussatus mortalities can reach up to 70%, causing social and economic losses. The objective of studying those unique pathways, is finding new therapeutic strategies capable of controlling/eliminating P. olseni proliferation in clams. In that sense metabolic pathways, were explored, and drugs affecting these cycles were tested for activity. The first step involved the identification of the genes behind those pathways, the reconstitution of the main steps, and molecular characterization of those genes and later on, the identification of possible targets within the genes studied. Metabolic cycles were screened due to the fact of not being present in host or differ in a critical way, such as the following pathways: shikimate, MEP-‐ isoprenoids, Leloir cycle for chitin production, purine biosynthesis (unique among protists), the de novo synthesis of folates (absent in metazoa) and some unique genes like, the alternative oxidase (a branch of respiratory chain) and the hypoxia sensor HPH. All those pathways were covered and possible chemical inhibition using therapeutic drugs was tested with positive results. The relation between the common host Ruditapes decussatus and P. olseni was also explored in a dimension not possible some years ago. With the accessibility to second generation sequencers and microarray analysis platforms, genes involved in host defense or parasite virulence and resistance to the host were deciphered, allowing aiming to new targets (mechanisms and pathways), offering new possibilities for the control of Perkinsus in close environments. The thousands of genes, generated by this work, sequenced and analyzed from this commercial valuable clam and for Perkinsus olseni will be an important and value tool for the scientific community, allowing a better understanding of host-‐parasite interactions, promoting the usage of P. olseni as an emerging model for alveolata parasites.
Resumo:
The present work has the merit of exploring an insight into the activation of defence genes of Quercus suber during response to infection by Phytophthora cinnamomi. Thus, cDNA-AFLP methodology was used to identify gene fragments differentially present in the mRNA profiles of host cells of micropropagated Q. suber plantlets roots infected with zoospores of P. cinnamomi at different post challenge time points. Six candidate genes were selected based on their interesting cDNA-AFLP expression patterns and homology to genes known to play a role in defence. These six genes encode a cinnamyl alcohol dehydrogenase 2 (QsCAD2), a protein disulphide isomerase (QsPDI), a CC-NBS-LRR resistance protein (QsRPc), thaumatin-like protein (QsTLP), chitinase (QsCHI) and a 1,3-beta glucanase (QsGLU). The current work has been successful in evaluation of the expression of these genes by qRT-PCR. Data analysis revealed that transcript levels of QsRPc, QsCHI, QsCAD2 and QsPDI increased during the early hours of inoculation, while transcript profiles of thaumatin-like protein showed decreasing. No expression was detected for 1,3-beta-glucanase (QsGLU). Furthermore, the choice of suitable reference genes in any new experimental system is absolutely crucial in qRT-PCR; for this reason in this study and for the first time a set of potential reference genes were analyzed and validated for qRT-PCR normalization in the patho-system Phytophthora-Q. suber. Four candidate reference genes polimerase II (QsRPII), eukaryotic translation initiation factor 5A(QsEIF-5A), b-tubulin (QsTUB) and a medium subunit family protein of Clathrin adaptor complexes (QsCACs) were evaluated to determine the most stable internal references in Q. suber. Analysis of stability of genes was carried out using Genex software. Results indicated all these four potential reference genes assumed stable expression. Data analysis revealed that QsRPII and QsCACs were the two most stable genes, while genes QsTUB and QsEIF-5A were the third and the fourth most stable gene, respectively. In this study, a plasmid-based quantitative PCR method was developed to measure P. cinnamomi colonization during infection process of Q. suber. Plasmid-based detection of P. cinnamomi showed a gradual accumulation of the pathogen DNA in cork oak root tips up to 24 h post infection. The higher increase in P. cinnamomi/plasmid DNA ratio occurred between 18 and 24 h. One of the primary objectives of this research was to study the effect of cinnamomins (elicitins secreted by P. cinnamomin) on inducing defence mechanism against the pathogen, as recent histological and ultra-structural studies showed that P. cinnamomi was restricted to the outer cortex root fragments pre-treated with capsicien and cryptogein, suggesting that elicitins can stimulate plant defence reactions against P. cinnamomi. To complement these studies and to have a clear view of the nature of the interaction, the role of cinnamomins in the production of the oxidative burst [ROS and ROS scavenging enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD)] and in the defence responses was evaluated. Cork oak seedlings were pretreated with alpha-cinnamomin and then inoculated with P. cinnamomi mycelia. Results showed a significant higher production of reactive oxygen species (ROS) (H2O2 and O2•-) in elicitin and non-elicitin treated roots in interaction with P. cinnamomi in comparison to the corresponding control. The plant group inoculated with the pathogen after cinnamomin treatment showed an earlier increase in H2O2 production but this was lower as compared with that group inoculated with P. cinnamomi alone. Also, in elicitin pre-treated group generally, a lower level of O2•− production during infection was observed as compared with inoculated roots with P. cinnamomi alone without elicitin treatment. Furthermore, in this study, we evaluated activities of antioxidant enzymes upon challenge with P. cinnamomi, with and without pretreatment with alpha cinnamomin. Results indicated that the activities of defense enzymes POD, SOD and CAT increased after P. cinnamomi inoculation when compared with those in the control group. Also, in the group treated with alpha-cinnamomin followed by P. cinnamomi inoculation, a higher level of enzymatic activities was detected as compared with elicitin non-treated group, which suggest the protective effect of alpha-cinnamomin against the pathogen due to higher elevated levels of defense enzymes POD, SOD and CAT during the infection period. Furthermore, a sensitive qPCR method was applied to measure the pathogen biomass in elicited and non-elicited Q. suber roots challenged with P. cinnamomi to elucidate the effect of cinnamomins on the colonization of P. cinnamomi. Plasmid-based quantification of P. cinnamomi showed a significant decrease in accumulation of the pathogen DNA in cork oak roots after treatment with alpha and beta-cinnamomins which attest the role of cinnamomins in promoting defense responses in cork oak against P. cinnamomi invasion.
Resumo:
In order to produce packaging films with a broad spectrum of action on microorganisms, the
effect of two antimicrobial (AM) to be included in the films, carvacrol and GSE were studied
separately on different microorganisms. Carvacrol was more effective against the grampositive
bacteria than against the gram-negative bacterium. GSE was not effective against
yeast. Subsequently, a search for optimal combinations of carvacrol, GSE and the addition of
chitosan (as a third component with film forming properties) was carried out. Response
surface analysis showed several synergetic effects and three optimal AM combinations
(OAMC) were obtained for each microorganism. The experimental validation confirmed that
the optimal solutions found can successfully predict the response for each microorganism.
The optimization of mixtures of the three components, but this time, using the same
concentration for all microorganisms, was also studied to obtain an OAMC with wide spectrum
of activity. The results of the response surface analysis showed several synergistic effects for
all microorganisms. Three OAMC, OAMC-1, OAMC-2, OAMC-3, were found to be the optimal
mixtures for all microorganisms. The radical scavenging activity (RSA) of the different agents
was then compared with a standard antioxidant (AOX) BHT, at different concentrations; as also
at the OAMC. The RSA increased in the following order: chitosan
Resumo:
Cancer is a multistage process characterized by three stages: initiation, promotion and progression; and is one of the major killers worldwide. Oxidative stress acts as initiator in tumorigenesis; chronic inflammation promotes cancer; and apoptosis inactivation is an issue in cancer progression. In this study, it was investigated the antioxidant, antiinflammatory and antitumor properties of hexane, ether, chloroform, methanol and water extracts of five species of halophytes: A. macrostachyum, P. coronopus, J. acutus, C. edulis and A. halimus. Antioxidant activity was assessed by DPPH• and ABTS•+ methods, and the total phenolics content (TPC) was evaluated by the Folin-Ciocalteau method. The anti-inflammatory activity of the extracts was determined by the Griess method, and by evaluating the inhibition of NO production in LPS-stimulated RAW- 264.7 macrophages. The cytotoxic activity of the extracts against HepG2 and THP1 cell lines was estimated by the MTT assay, and the results obtained were further compared with the S17 non-tumor cell line. The induction of apoptosis of J. acutus ether extract was assessed by DAPI staining. The highest antioxidant activities was observed in C. edulis methanol and the J. acutus ether extracts against the DPPH• radical; and J. acutus ether and A. halimus ether extracts against the ABTS•+ radical. The methanol extracts of C. edulis and P. coronopus, and the ether extract of J. acutus revealed a high TPC. Generally the antioxidant activity had no correlation with the TPC. The A. halimus chloroform and P. coronopus hexane extracts demonstrated ability to reduce NO production in macrophages (> 50%), revealing their anti-inflammatory capacity. The ether extract of J. acutus showed high cytotoxicity against HepG2 cancer cells, with reduced cellular viability even at the lowest concentrations. This outcome was significantly lower than the obtained with the non-tumor cells (S17). This result was complemented by the induction of apoptosis.
Resumo:
O presente trabalho objetiva a montagem em escala laboratorial de um grupo de 6 protótipos de Células de Combustível Microbianas (CCM) de Câmara Simples pretendendo constituir um contributo de desenvolvimento de processos anaeróbios para tratamento de águas residuais em Estações de Tratamento de Águas Residuais (ETARs) e produção simultânea de energia elétrica. Em fase preliminar procede-se à montagem de um sistema laboratorial composto por 3 conjuntos de protótipos em duplicados com 3 granulometrias de carvão ativado granular (GAC). Os princípios que fundamentam a seleção do protótipo tipo são uma câmara anódica tubular totalmente preenchida com GAC para facilitar a fixação de biofilmes e a diminuição do espaçamento entre elétrodos com a interposição de um separador para reduzir a resistência interna. A experiência laboratorial inicia-se com uma fase de aclimatação com Água residual artificial e sequencialmente com água residual recolhida na ETAR Faro-Noroeste. Na etapa final a carga orgânica da água residual é incrementada com adição de Acetato de sódio. Os ensaios decorrem em modo de fluxo contínuo. São testados e comparados três tempos de contacto do afluente com o GAC (3, 10 e 30 horas), a combinação destes com dois separadores designados por Daramic HP 200 e GF/A e sem qualquer separador. Finalmente é efetuado um teste incrementando 6 a 8 vezes a carga orgânica do afluente. O desempenho é aferido através do traçado de curvas de polarização, curvas de potência e da percentagem de remoção da Carência Química de Oxigénio (CQO). Conclui que em alguns testes as eficiências de remoção de CQO são adequadas à legislação em vigor, que o aumento e tipo de carga orgânica do afluente e a operação sem separadores incrementam a diferença de potencial e reduzem a resistência interna e que as granulometrias do GAC testadas tiveram pouco efeito na avaliação dos parâmetros considerados.