6 resultados para Phantoms, Imaging
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Tese dout., Engenharia electrónica e computação - Processamento de sinal, Universidade do Algarve, 2008
Resumo:
Dissolved oxygen (DO) is one of the most important environmental variables of water quality, especially for marine life. Consequently, oxygen is one of the Chemical Quality Elements required for the implementation of European Union Water Framework Directive. This study uses the example of the Ria Formosa, a meso-tidal lagoon on the south coast of Portugal to demonstrate how monitoring of water quality for coastal waters must be well designed to identify symptoms of episodic hypoxia. New data from the western end of the Ria Formosa were compared to values in a database of historical data and in the published literature to identify long-term trends. The dissolved oxygen concentration values in the database and in the literature were generally higher than those found in this study, where episodic hypoxia was observed during the summer. Analysis of the database showed that the discrepancy was probably related with the time and the sites where the samples had been collected, rather than a long-term trend. The most problematic situations were within the inner lagoon near the city of Faro, where episodic hypoxia (<2 mg dm3 DO) occurred regularly in the early morning. These results emphasise the need for a balanced sampling strategy for oxygen monitoring which includes all periods of the day and night, as well as a representative range of sites throughout the lagoon. Such a strategy would provide adequate data to apply management measures to reduce the risk of more persistent hypoxia that would impact on the ecological, important natural resource. economic and leisure uses of this important natural resource.
Resumo:
Purpose: To know how often occur the repetitions of MRI exams and sequences in radiology departments. Methods and Materials: A self applied-questionnaire was used as instrument and assigned to 57 radiographers who performed MRI exams to determine which were the causes that lead to the repetition. The questionnaires were interpreted and statistically analyzed through descriptive statistics and Spearman’s rho correlations. Results: At a 95% confidence interval, the major results suggest that the patient’s movement during de MRI exams is the main cause to repeat this exams (mean of 3.88 on a 5 points likert scale). However, there are causes related to the radiographer’s and the results showed that the introduction of wrong imaging parameters by the performer are a major cause too (N=26). Spearman rho correlations between radiographer’s time of experience and frequency of MRI exams repetitions were poor and not significant (r=0.141; p=0.297). The correlations between radiographer’s tiredness and frequency of MRI exams repetitions were negative, weak and not significant (r= -0.151; p=0.263). Conclusion: The patients’ movement may disrupt the examination or degrade the images with artifacts. The level of experience doesn’t influence the repetitions of MRI exams, it seems that seniors radiographers don’t have improvements in performance as it should be expected. It’s recommendable to do training courses regularly to improve the performance and systematically evaluate. Several features will need to be identified which would decrease the MRI exams repetitions.
Resumo:
This work reports the assessment of time-shifts (TS) from backscattered ultrasound (BSU) signals when large temperature variations (up to 15 degrees C) were induced in a gel-based phantom. The results showed that during cooling temperature is linear with TS at a rate of approximately 74 ns/degrees C. However during a complete heating/cooling cycle, the relation is highly non-linear. This can be explained by the fact that during cooling the temperature distribution is more uniform. Another problem to report is that TS is very sensitive to external movements.
Resumo:
Aiming at time-spatial characterization of tissue temperature when ultrasound is applied for thermal therapeutic proposes two experiments were developed considering gel-based phantoms, one of them including an artificial blood vessel. The blood vessel was mimicking blood flow in a common carotid artery. For each experiment phantoms were heated by a therapeutic ultrasound (TU) device emitting different intensities (0.5, 1, 1.5, 1.8 W/cm2). Temperature was monitored by thermocouples and estimated through imaging ultrasound transducer's signals within specific special points inside the phantom. The temperature estimation procedure was based on temporal echo-shifts (TES), computed based on echo-shifts collected through image ultrasound (IU) transducer. Results show that TES is a reliable non-invasive method of temperature estimation, regardless the TU intensities applied. Presence of a pulsatile blood flow vessel in the focal point of TU transducer reduces thermal variation in more than 50%, also affecting the temperature variation in the surrounding area. In other words, vascularized tissues require longer ultrasound thermal therapeutic sessions or higher TU intensities and inclusion of IU in the therapeutic procedure enables non-invasive monitoring of temperature. © 2013 IEEE.
Resumo:
Dissertação de mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015