28 resultados para NEURAL RETINA
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The self-organized morphogenesis of the vertebrate optic cup entails coupling the activation of the retinal gene regulatory network to the constriction-driven infolding of the retinal epithelium. Yet the genetic mechanisms underlying this coordination remain largely unexplored. Through phylogenetic footprinting and transgenesis in zebrafish, here we examine the cis-regulatory landscape of opo, an endocytosis regulator essential for eye morphogenesis. Among the different conserved enhancers identified, we isolate a single retina-specific element (H6_10137) and show that its activity depends on binding sites for the retinal determinant Vsx2. Gain- and loss-of-function experiments and ChIP analyses reveal that Vsx2 regulates opo expression through direct binding to this retinal enhancer. Furthermore, we show that vsx2 knockdown impairs the primary optic cup folding. These data support a model by which vsx2, operating through the effector gene opo, acts as a central transcriptional node that coordinates neural retina patterning and optic cup invagination in zebrafish.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Resumo:
The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
Resumo:
Current and past research has brought up new views related to the optimization of neural networks. For a fixed structure, second order methods are seen as the most promising. From previous works we have shown how second order methods are of easy applicability to a neural network. Namely, we have proved how the Levenberg-Marquard possesses not only better convergence but how it can assure the convergence to a local minima. However, as any gradient-based method, the results obtained depend on the startup point. In this work, a reformulated Evolutionary algorithm - the Bacterial Programming for Levenberg-Marquardt is proposed, as an heuristic which can be used to determine the most suitable starting points, therefore achieving, in most cases, the global optimum.
Resumo:
The design phase of B-spline neural networks represents a very high computational task. For this purpose, heuristics have been developed, but have been shown to be dependent on the initial conditions employed. In this paper a new technique, Bacterial Programming, is proposed, whose principles are based on the replication of the microbial evolution phenomenon. The performance of this approach is illustrated and compared with existing alternatives.
Resumo:
This experimental study focuses on a detection system at the seismic station level that should have a similar role to the detection algorithms based on the ratio STA/LTA. We tested two types of neural network: Multi-Layer Perceptrons and Support Vector Machines, trained in supervised mode. The universe of data consisted of 2903 patterns extracted from records of the PVAQ station, of the seismography network of the Institute of Meteorology of Portugal. The spectral characteristics of the records and its variation in time were reflected in the input patterns, consisting in a set of values of power spectral density in selected frequencies, extracted from a spectro gram calculated over a segment of record of pre-determined duration. The universe of data was divided, with about 60% for the training and the remainder reserved for testing and validation. To ensure that all patterns in the universe of data were within the range of variation of the training set, we used an algorithm to separate the universe of data by hyper-convex polyhedrons, determining in this manner a set of patterns that have a mandatory part of the training set. Additionally, an active learning strategy was conducted, by iteratively incorporating poorly classified cases in the training set. The best results, in terms of sensitivity and selectivity in the whole data ranged between 98% and 100%. These results compare very favorably with the ones obtained by the existing detection system, 50%.
Resumo:
The aim of this chapter is to introduce background concepts in nonlinear systems identification and control with artificial neural networks. As this chapter is just an overview, with a limited page space, only the basic ideas will be explained here. The reader is encouraged, for a more detailed explanation of a specific topic of interest, to consult the references given throughout the text. Additionally, as general books in the field of neural networks, the books by Haykin [1] and Principe et al. [2] are suggested. Regarding nonlinear systems identification, covering both classical and neural and neuro-fuzzy methodologies, Reference 3 is recommended. References 4 and 5 should be used in the context of B-spline networks.
Resumo:
In modern measurement and control systems, the available time and resources are often not only limited, but could change during the operation of the system. In these cases, the so-called anytime algorithms could be used advantageously. While diflerent soft computing methods are wide-spreadly used in system modeling, their usability in these cases are limited.
Resumo:
Complete supervised training algorithms for B-spline neural networks and fuzzy rule-based systems are discussed. By interducing the relationship between B-spline neural networks and certain types of fuzzy models, training algorithms developed initially for neural networks can be adapted by fuzzy systems.
Resumo:
A gas turbine is made up of three basic components: a compressor, a combustion chamber and a turbine. Air is drawn into the engine by the compressor, which compresses it and delivers it to the combustion chamber. There, the air is mixed with the fuel and the mixture ignited, producing a rise of temperature and therefore an expansion of the gases. These are expelled through the engine nozzle, but first pass through the turbine, designed to extract energy to keep the compressor rotating [1]. The work described here uses data recorded from a Rolls Royce Spey MK 202 turbine, whose simplified diagram can be seen in Fig. 1. Both the compressor and the turbine are split into low pressure (LP) and high pressure (HP) stages. The HP turbine drives the HP compressor and the LP turbine drives the LP compressor. They are connected by concentric shafts that rotate at different speeds, denoted as NH and NL.
Resumo:
The presence of circulating cerebral emboli represents an increased risk of stroke. The detection of such emboli is possible with the use of a transcranial Doppler ultrasound (TCD) system.
Resumo:
The problem with the adequacy of radial basis function neural networks to model the inside air temperature as a function of the outside air temperature and solar radiation, and the inside relative humidity in an hydroponic greenhouse is addressed.
Resumo:
Despite the developments in more sophisticated controllers, still the Proportional, Integral and Derivative (PID) controller is by far the controller most widely used in industry automation.
Resumo:
This papers describes an extantion of previous works on the subject of neural network proportional, integral and derivative (PID) autotuning. Basically, neural networks are employed to supply the three PID parameters, according to the integral of time multiplied by the absolute error (ITAE) criterion, to a standard PID controller.
Resumo:
This paper describes previous works (1), (2), on neural network pid autotuning. Basically, neural networks are employed to supply PID parameters, according to the ITAE criterion, to a standard PID controller.