9 resultados para Multi-Exposure Plate Images Processing
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Computer vision for realtime applications requires tremendous computational power because all images must be processed from the first to the last pixel. Ac tive vision by probing specific objects on the basis of already acquired context may lead to a significant reduction of processing. This idea is based on a few concepts from our visual cortex (Rensink, Visual Cogn. 7, 17-42, 2000): (1) our physical surround can be seen as memory, i.e. there is no need to construct detailed and complete maps, (2) the bandwidth of the what and where systems is limited, i.e. only one object can be probed at any time, and (3) bottom-up, low-level feature extraction is complemented by top-down hypothesis testing, i.e. there is a rapid convergence of activities in dendritic/axonal connections.
Resumo:
In this work, a comprehensive review on automatic analysis of Proteomics and Genomics images is presented. Special emphasis is given to a particularly complex image produced by a technique called Two-Dimensional Gel Electrophoresis (2-DE), with thousands of spots (or blobs). Automatic methods for the detection, segmentation and matching of blob like features are discussed and proposed. In particular, a very robust procedure was achieved for processing 2-DE images, consisting mainly of two steps: a) A very trustworthy new approach for the automatic detection and segmentation of spots, based on the Watershed Transform, without any foreknowledge of spot shape or size, and without user intervention; b) A new method for spot matching, based on image registration, that performs well for either global or local distortions. The results of the proposed methods are compared to state-of-the-art academic and commercial products.
Resumo:
In this paper we present an improved scheme for line and edge detection in cortical area V1, based on responses of simple and complex cells, truly multi-scale with no free parameters. We illustrate the multi-scale representation for visual reconstruction, and show how object segregation can be achieved with coarse-to-finescale groupings. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only, and final categorization on coarse plus fine scales. Processing schemes are discussed in the framework of a complete cortical architecture.
Resumo:
Tese de dout., Engenharia Electrónica e de Computadores, Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2007
Resumo:
The primary visual cortex employs simple, complex and end-stopped cells to create a scale space of 1D singularities (lines and edges) and of 2D singularities (line and edge junctions and crossings called keypoints). In this paper we show first results of a biological model which attributes information of the local image structure to keypoints at all scales, ie junction type (L, T, +) and main line/edge orientations. Keypoint annotation in combination with coarse to fine scale processing facilitates various processes, such as image matching (stereo and optical flow), object segregation and object tracking.
Resumo:
In this paper we present an improved model for line and edge detection in cortical area V1. This model is based on responses of simple and complex cells, and it is multi-scale with no free parameters. We illustrate the use of the multi-scale line/edge representation in different processes: visual reconstruction or brightness perception, automatic scale selection and object segregation. A two-level object categorization scenario is tested in which pre-categorization is based on coarse scales only and final categorization on coarse plus fine scales. We also present a multi-scale object and face recognition model. Processing schemes are discussed in the framework of a complete cortical architecture. The fact that brightness perception and object recognition may be based on the same symbolic image representation is an indication that the entire (visual) cortex is involved in consciousness.
Resumo:
Increasingly more applications in computer vision employ interest points. Algorithms like SIFT and SURF are all based on partial derivatives of images smoothed with Gaussian filter kemels. These algorithrns are fast and therefore very popular.
Resumo:
The IFAC International Conference on Intelligent Control Systems and Signal Processing (ICONS 2003) was organized under the auspices of the recently founded IFAC Technical Committee on Cognition and Control, and it was the first IFAC event specifically devoted to this theme. Recognizing the importance of soft-computing techniques for fields covered by other IFAC Technical Committees, ICONS 2003 was a multi-track Conference, co-sponsored by four additional Technical Committees: Computers for Control, Optimal Control, Control in Agriculture, and Modelling, Identification and Signal Processing. The Portuguese Society for Automatic Control (APCA) hosted ICONS 2003, which was held at the University of Algarve, Faro, Portugal.
Resumo:
In this study, Artificial Neural Networks are applied to multistep long term solar radiation prediction. The networks are trained as one-step-ahead predictors and iterated over time to obtain multi-step longer term predictions. Auto-regressive and Auto-regressive with exogenous inputs solar radiationmodels are compared, considering cloudiness indices as inputs in the latter case. These indices are obtained through pixel classification of ground-to-sky images. The input-output structure of the neural network models is selected using evolutionary computation methods.