3 resultados para MIP Mathematical Programming Job Shop Scheduling
em SAPIENTIA - Universidade do Algarve - Portugal
Optimised search heuristics: combining metaheuristics and exact methods to solve scheduling problems
Resumo:
Tese dout., Matemática, Investigação Operacional, Universidade do Algarve, 2009
Resumo:
In this work we develop a methodology for the economic evaluation of soil tillage technologies, in a risky environment, and to capture the influence of farmer behaviour on his technology choice. The model has short-term activities, that change with the type of year, and long-term activities, in which sets of traction investment activities are included. Although these activities do not change with the type of year, they lead to different availability of resources for each type of year, since the same tractor has different available fieldwork days under different weather conditions. We prove that the model is sensitive to the greater income variability resulting from the use of alternative technologies and to the balance between income and risk, accounting for the probability of occurrence of each state of nature and giving an investment solution that considers the best production plan for each type of year. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.