1 resultado para MALDI-TOF
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
It is widely recognized that protein restriction in utero may cause metabolic and endocrine adaptations, which may be of benefit to the neonate on a short-term basis but may cause adverse long-term conditions such as obesity, Type 2 diabetes, metabolic syndrome, hypertension and cardiovascular diseases. Adequate foetal and early post natal nutrient and energy supply is therefore essential for adult animal health, performance and life span. In this project it was investigated the progressive adaptations of the hepatic proteome in male mink offspring exposed to either a low protein (FL) or an adequate protein (FA) diet in utero fed either on a low protein (LP) or on an adequate (AP) diet from weaning until sexual maturity. Specifically, the aim was to determine the metabolic adaptations at selected phases of the animal’s first annual cycle and establish the metabolic priorities occurring during those phases. The three different morphological stages studied during the first year of development included, end of bone growth at 4 months of age, maximal fat accretion at 6 months of age and sexual maturity at 12 months of age. A reference proteome of mink liver coming from these different animal groups were generated using 2D electrophoresis coupled to MALDI-TOF analysis and the way in which dietary treatment affect their proteome was established. Approximately 330 proteins were detected in the mink liver proteome. A total of 27 comparisons were carried out between all different animal groups which resulted in 20 differentially expressed proteins. An extensive survey was conducted towards the characterization of these proteins including their subcellular localization, the biological processes in which they are involved and their molecular functions. This characterization allowed the identification of proteins in various processes including the glycolysis and fatty acid metabolism. The detailed analysis of the different dietary treatment animal groups was indicative of differences in metabolism and also to changes associated with development in mink.