4 resultados para Low vision
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Multi-scale representations of lines, edges and keypoints on the basis of simple, complex and end-stopped cells can be used for object categorisation and recognition (Rodrigues and du Buf, 2009 BioSystems 95 206-226). These representations are complemented by saliency maps of colour, texture, disparity and motion information, which also serve to model extremely fast gist vision in parallel with object segregation. We present a low-level geometry model based on a single type of self-adjusting grouping cell, with a circular array of dendrites connected to edge cells located at several angles.
Resumo:
Tese de dout., Engenharia Electrónica e de Computadores, Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2007
Resumo:
Attention is usually modelled by sequential fixation of peaks in saliency maps. Those maps code local conspicuity: complexity, colour and texture. Such features have no relation to entire objects, unless also disparity and optical flow are considered, which often segregate entire objects from their background. Recently we developed a model of local gist vision: which types of objects are about where in a scene. This model addresses man-made objects which are dominated by a small shape repertoire: squares, rectangles, trapeziums, triangles, circles and ellipses. Only exploiting local colour contrast, the model can detect these shapes by a small hierarchy of cell layers devoted to low- and mid-level geometry. The model has been tested successfully on video sequences containing traffic signs and other scenes, and partial occlusions were not problematic.
Resumo:
Ultrasonic, infrared, laser and other sensors are being applied in robotics. Although combinations of these have allowed robots to navigate, they are only suited for specific scenarios, depending on their limitations. Recent advances in computer vision are turning cameras into useful low-cost sensors that can operate in most types of environments. Cameras enable robots to detect obstacles, recognize objects, obtain visual odometry, detect and recognize people and gestures, among other possibilities. In this paper we present a completely biologically inspired vision system for robot navigation. It comprises stereo vision for obstacle detection, and object recognition for landmark-based navigation. We employ a novel keypoint descriptor which codes responses of cortical complex cells. We also present a biologically inspired saliency component, based on disparity and colour.