5 resultados para Localisation 3D
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The algorithm developed uses an octree pyramid in which noise is reduced at the expense of the spatial resolution. At a certain level an unsupervised clustering without spatial connectivity constraints is applied. After the classification, isolated voxels and insignificant regions are removed by assigning them to their neighbours. The spatial resolution is then increased by the downprojection of the regions, level by level. At each level the uncertainty of the boundary voxels is minimised by a dynamic selection and classification of these, using an adaptive 3D filtering. The algorithm is tested using different data sets, including NMR data.
Resumo:
Most simultaneous localisation and mapping (SLAM) solutions were developed for navigation of non-cognitive robots. By using a variety of sensors, the distances to walls and other objects are determined, which are then used to generate a map of the environment and to update the robot’s position. When developing a cognitive robot, such a solution is not appropriate since it requires accurate sensors and precise odometry, also lacking fundamental features of cognition such as time and memory. In this paper we present a SLAM solution in which such features are taken into account and integrated. Moreover, this method does not require precise odometry nor accurate ranging sensors.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic routing and saliency maps for Focus-of-Attention. All these combined allow us to segregate faces. Events of different facial views are stored in memory and combined in order to identify the view and recognise the face including facial expression. In this paper we show that with five 2D views and their cortical representations it is possible to determine the left-right and frontal-lateral-profile views and to achieve view-invariant recognition of 3D faces.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic feature routine, and saliency maps for Focus-of-Attention.
Resumo:
Dissertação de mest., Produção, Edição e Comunicação de Conteúdos (Comunicação Multimédia), Faculdade de Ciências Humanas e Sociais, Univ. do Algarve, 2012