18 resultados para Keypoints
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
End-stopped cells in cortical area V1, which combine out- puts of complex cells tuned to different orientations, serve to detect line and edge crossings (junctions) and points with a large curvature. In this paper we study the importance of the multi-scale keypoint representa- tion, i.e. retinotopic keypoint maps which are tuned to different spatial frequencies (scale or Level-of-Detail). We show that this representation provides important information for Focus-of-Attention (FoA) and object detection. In particular, we show that hierarchically-structured saliency maps for FoA can be obtained, and that combinations over scales in conjunction with spatial symmetries can lead to face detection through grouping operators that deal with keypoints at the eyes, nose and mouth, especially when non-classical receptive field inhibition is employed. Al- though a face detector can be based on feedforward and feedback loops within area V1, such an operator must be embedded into dorsal and ventral data streams to and from higher areas for obtaining translation-, rotation- and scale-invariant face (object) detection.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extractions. Simple, complex and end-stopped cells tuned to different spatial frequencies (scales) and/or orientations provide input for line, edge and keypoint detection. This yields a rich, multi-scale object representation that can be stored in memory in order to identify objects. The multi-scale, keypoint-based saliency maps for Focus-of-Attention can be explored to obtain face detection and normalization, after which face recognition can be achieved using the line/edge representation. In this paper, we focus only on face normalization, showing that multi-scale keypoints can be used to construct canonical representations of faces in memory.
Resumo:
Computer vision for realtime applications requires tremendous computational power because all images must be processed from the first to the last pixel. Ac tive vision by probing specific objects on the basis of already acquired context may lead to a significant reduction of processing. This idea is based on a few concepts from our visual cortex (Rensink, Visual Cogn. 7, 17-42, 2000): (1) our physical surround can be seen as memory, i.e. there is no need to construct detailed and complete maps, (2) the bandwidth of the what and where systems is limited, i.e. only one object can be probed at any time, and (3) bottom-up, low-level feature extraction is complemented by top-down hypothesis testing, i.e. there is a rapid convergence of activities in dendritic/axonal connections.
Resumo:
We present a 3D representation that is based on the pro- cessing in the visual cortex by simple, complex and end-stopped cells. We improved multiscale methods for line/edge and keypoint detection, including a method for obtaining vertex structure (i.e. T, L, K etc). We also describe a new disparity model. The latter allows to attribute depth to detected lines, edges and keypoints, i.e., the integration results in a 3D \wire-frame" representation suitable for object recognition.
Resumo:
Increasingly more applications in computer vision employ interest points. Algorithms like SIFT and SURF are all based on partial derivatives of images smoothed with Gaussian filter kemels. These algorithrns are fast and therefore very popular.
Resumo:
Human-robot interaction is an interdisciplinary research area which aims at integrating human factors, cognitive psychology and robot technology. The ultimate goal is the development of social robots. These robots are expected to work in human environments, and to understand behavior of persons through gestures and body movements. In this paper we present a biological and realtime framework for detecting and tracking hands. This framework is based on keypoints extracted from cortical V1 end-stopped cells. Detected keypoints and the cells’ responses are used to classify the junction type. By combining annotated keypoints in a hierarchical, multi-scale tree structure, moving and deformable hands can be segregated, their movements can be obtained, and they can be tracked over time. By using hand templates with keypoints at only two scales, a hand’s gestures can be recognized.
Resumo:
Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints.
Resumo:
Lines and edges provide important information for object categorization and recognition. In addition, one brightness model is based on a symbolic interpretation of the cortical multi-scale line/edge representation. In this paper we present an improved scheme for line/edge extraction from simple and complex cells and we illustrate the multi-scale representation. This representation can be used for visual reconstruction, but also for nonphotorealistic rendering. Together with keypoints and a new model of disparity estimation, a 3D wireframe representation of e.g. faces can be obtained in the future.
Resumo:
Object recognition requires that templates with canonical views are stored in memory. Such templates must somehow be normalised. In this paper we present a novel method for obtaining 2D translation, rotation and size invariance. Cortical simple, complex and end-stopped cells provide multi-scale maps of lines, edges and keypoints. These maps are combined such that objects are characterised. Dynamic routing in neighbouring neural layers allows feature maps of input objects and stored templates to converge. We illustrate the construction of group templates and the invariance method for object categorisation and recognition in the context of a cortical architecture, which can be applied in computer vision.
Resumo:
Tese de dout., Engenharia Electrónica e de Computadores, Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2007
Resumo:
Face detection and recognition should be complemented by recognition of facial expression, for example for social robots which must react to human emotions. Our framework is based on two multi-scale representations in cortical area V1: keypoints at eyes, nose and mouth are grouped for face detection [1]; lines and edges provide information for face recognition [2].
Resumo:
The primary visual cortex employs simple, complex and end-stopped cells to create a scale space of 1D singularities (lines and edges) and of 2D singularities (line and edge junctions and crossings called keypoints). In this paper we show first results of a biological model which attributes information of the local image structure to keypoints at all scales, ie junction type (L, T, +) and main line/edge orientations. Keypoint annotation in combination with coarse to fine scale processing facilitates various processes, such as image matching (stereo and optical flow), object segregation and object tracking.
Resumo:
In this paper we present a monocular vision system for a navigation aid. The system assists blind persons in following paths and sidewalks, and it alerts the user to moving obstacles which may be on collision course. Path borders and the vanishing point are de-tected by edges and an adapted Hough transform. Opti-cal flow is detected by using a hierarchical, multi-scale tree structure with annotated keypoints. The tree struc-ture also allows to segregate moving objects, indicating where on the path the objects are. Moreover, the centre of the object relative to the vanishing point indicates whether an object is approaching or not.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic routing and saliency maps for Focus-of-Attention. All these combined allow us to segregate faces. Events of different facial views are stored in memory and combined in order to identify the view and recognise the face including facial expression. In this paper we show that with five 2D views and their cortical representations it is possible to determine the left-right and frontal-lateral-profile views and to achieve view-invariant recognition of 3D faces.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. In cortical area V1 exist double-opponent colour blobs, also simple, complex and end-stopped cells which provide input for a multiscale line/edge representation, keypoints for dynamic feature routine, and saliency maps for Focus-of-Attention.