3 resultados para Genetic transcription -- Regulation
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
The European sea bass, Dicentrarchus labrax, is one of the most important marine species cultivated in Southern Europe and has not benefited from selective breeding. One of the major goals in the sea bass (D. labrax) aquaculture industry is to understand and control the complexity of growth associated traits. The aim of the methodology developed for the studies reported in the thesis was not only to establish genetic and genomic resources for sea bass, but to also develop a conceptual strategy to efficiently create knowledge in a research environment that can easily be transferred to the aquaculture industry. The strategy involved; i) establishing an annotated sea bass transcriptome and then using it to, ii) identify new genetic markers for target QTL regions so that, iii) new QTL analysis could be performed and marker based resolution of the DNA regions of interest increased, and then iv) to merge the linkage map and the physical map in order to map the QTL confidence intervals to the sea bass genome and identify genes underlying the targeted traits. Finally to test if genes in the QTL regions that are candidates for divergent growth phenotypes have modified patterns of transcription that reflects the modified whole organism physiology SuperSAGE-SOLiD4 gene expression was used with sea bass with high growth heterogeneity. The SuperSAGE contributed to significantly increase the transcriptome information for sea bass muscle, brain and liver and also led to the identification of putative candidate genes lying in the genomic region of growth related QTL. Lastly all differentially expressed transcripts in brain, liver and muscle of the European sea bass with divergent specific growth rates were mapped to gene pathways and networks and the regulatory pathways most affected identified and established the tissue specific changes underlying the divergent SGR. Owing to the importance of European sea bass to Mediterranean aquaculture and the developed genomics resources from the present thesis and from other studies it should be possible to implement genetic selection programs using marker assisted selection.
Resumo:
Cardiogenesis is a delicate and complex process that requires the coordination of an intricate network of pathways and the different cell types. Therefore, understanding heart development at the morphogenetic level is an essential requirement to uncover the causes of congenital heart disease and to provide insight for disease therapies. Mouse Cerberus like 2 (Cerl2) has been defined as a Nodal antagonist in the node with an important role in the Left-Right (L/R) axis establishment, at the early embryonic development. As expected, Cerl2 knockout mice (Cerl2-/-) showed multiple laterality defects with associated cardiac failure. In order to identify the endogenous role of Cerl2 during heart formation independent of its described functions in the node, we accurately analyzed animals where laterality defects were not present. We thereby unravel the consequences of Cerl2 lossof- function in the heart, namely increased left ventricular thickness due to hyperplasia of cardiomyocytes and de-regulated expression of cardiac genes. Furthermore, the Cerl2 mutant neonates present impaired cardiac function. Once that the cardiac expression of Cerl2 is mostly observed in the left ventricle until around midgestration, this result suggest a specific regulatory role of Cerl2 during the formation of the left ventricular myoarchitecture. Here, we present two possible molecular mechanisms underlying the cardiac Cerl2 function, the regulation of Cerl2 antagonist in activation of the TGFßs/Nodal/Activin/Smad2 signaling identified by increased Smad2 phosphorilation in Cerl2-/- hearts and the negative feedback between Cerl2 and Wnt/ß-catenin signaling in heart formation. In this work and since embryonic stem cells derived from 129 mice strain is extensively used to produce targeted mutants, we also present echocardiographic reference values to progressive use of juveniles and young adult 129/Sv strain in cardiac studies. In addition, we investigate the cardiac physiology of the surviving Cerl2 mutants in 129/Sv background over time through a follow-up study using echocardiographic analysis. Our results revealed that Cerl2-/- mice are able to improve and maintain the diastolic and most of systolic cardiac physiologic parameters as analyzed until young adult age. Since Cerl2 is no longer expressed in the postnatal heart, we suggest that an intrinsic and compensatory mechanism of adaptation may be active for recovering the decreased cardiac function found in Cerl2 mutant neonates. Altogether, these data highlight the role of Cerl2 during embryonic heart development in mice. Furthermore, we also suggest that Cerl2-/- may be an interesting model to uncover the molecular, cellular and physiological mechanisms behind the improvement of the cardiac function, contributing to the development of therapeutic approaches to treat heart failures.
Resumo:
Bone morphogenetic proteins (BMPs) are multifunctional growth factors belonging to the transforming growth factor β (TGFβ) superfamily with a central role in bone formation and mineralization. BMP2, a founding member of this family, has demonstrated remarkable osteogenic properties and is clinically used to promote bone repair and fracture healing. Lack of basic data on factors regulating BMP2 expression and activity have hampered a better understanding of its role in bone formation and bone-related diseases. The objective of this work was to collect new functional data and determine spatiotemporal expression patterns in a fish system aiming towards a better understanding of BMP2 function and regulation. Transcriptional and post-transcriptional regulation of gilthead seabream BMP2 gene was inferred from luciferase reporter systems. Several bone- and cartilage-related transcription factors (e.g. RUNX3, MEF2c, SOX9 and ETS1) were found to regulate BMP2 transcription, while microRNA 20a was shown to affect stability of the BMP2 transcript and thus the mineralogenic capacity of fish bone-derived host cells. The regulation of BMP2 activity through an interaction with the matrix Gla protein (MGP) was investigated in vitro using BMP responsive elements (BRE) coupled to luciferase reporter gene. Although we demonstrated the functionality of the experimental system in a fish cell line and the activation of BMP signaling pathway by seabream BMP2, no conclusive evidence could be collected on a possible interaction beween MGP and BMP2. The evolutionary relationship among the members of BMP2/4/16 subfamily was inferred from taxonomic and phylogenetic analyses. BMP16 diverged prior to BMP2 and BMP4 and should be the result of an ancient genome duplication that occurred early in vertebrate evolution. Structural and functional data suggested that all three proteins are effectors of the BMP signaling pathway, but expression data revealed different spatiotemporal patterns in teleost fish suggesting distinct mechanisms of regulation. In this work, through the collection of novel data, we provide additional insight into the regulation, the structure and the phylogenetic relationship of BMP2 and its closely related family members.