5 resultados para Genetic Processes

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências do Mar, da Terra e do Ambiente, Ramo: Ciências do Mar, Especialização em Ecologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coastal lagoons represent habitats with widely heterogeneous environmental conditions, particularly as regards salinity and temperature,which fluctuate in both space and time. These characteristics suggest that physical and ecological factors could contribute to the genetic divergence among populations occurring in coastal lagoon and opencoast environments. This study investigates the genetic structure of Holothuria polii at a micro-geographic scale across theMar Menor coastal lagoon and nearbymarine areas, estimating the mitochondrial DNA variation in two gene fragments, cytochrome oxidase I (COI) and 16S rRNA (16S). Dataset of mitochondrial sequences was also used to test the influence of environmental differences between coastal lagoon andmarine waters on population genetic structure. All sampled locations exhibited high levels of haplotype diversity and low values of nucleotide diversity. Both genes showed contrasting signals of genetic differentiation (non-significant differences using COI and slight differences using 16S, which could due to different mutation rates or to differential number of exclusive haplotypes. We detected an excess of recent mutations and exclusive haplotypes, which can be generated as a result of population growth. However, selective processes can be also acting on the gene markers used; highly significant generalized additive models have been obtained considering genetic data from16S gene and independent variables such as temperature and salinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic plants of the genus Ruppia inhabit some of the most threatened habitats in the world, such as coastal lagoons and inland saline to brackish waters where their meadows play several key roles. The evolutionary history of this genus has been affected by the processes of hybridization, polyploidization, and vicariance, which have resulted in uncertainty regarding the number of species. In the present study, we apply microsatellite markers for the identification, genetic characterization, and detection of hybridization events among populations of putative Ruppia species found in the southern Iberian Peninsula, with the exception of a clearly distinct species, the diploid Ruppia maritima. Microsatellite markers group the populations into genetically distinct entities that are not coincident with geographical location and contain unique diagnostic alleles. These results support the interpretation of these entities as distinct species: designated here as (1) Ruppia drepanensis, (2) Ruppia cf. maritima, and (3) Ruppia cirrhosa. A fourth distinct genetic entity was identified as a putative hybrid between R. cf. maritima and R. cirrhosa because it contained a mixture of microsatellite alleles that are otherwise unique to these putative species. Hence, our analyses were able to discriminate among different genetic entities of Ruppia and, by adding multilocus nuclear markers, we confirm hybridization as an important process of speciation within the genus. In addition, careful taxonomic curation of the samples enabled us to determine the genotypic and genetic diversity and differentiation among populations of each putative Ruppia species. This will be important for identifying diversity hotspots and evaluating patterns of population genetic connectivity. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental heterogeneity in coastal lagoons is expected to facilitate local adaptation in response to different ecological conditions, causing significant genetic structuring within lagoon populations at a small scale and also differentiation between lagoons. However, these patterns and processes of genetic structuring are still poorly understood. The aims of our study were (1) to seek genetic structure at a small scale in Cerastoderma glaucum inside the Mar Menor coastal lagoon using a mitochondrial DNA marker (COI) that has previously detected genetic differentiation inside the lagoon in other species and (2) to evaluate the influence of extreme environmental conditions and habitat discontinuity on its genetic composition. The results indicate high levels of haplotype diversity and low values of nucleotide diversity. COI data provide evidence of significant population differentiation among some localities within the lagoon. Limited gene flow and unstable population dynamics (i.e. fluctuations in population size caused by local extinction and recolonization), probably due to the high environmental heterogeneity, could generate the small-scale genetic divergence detected between populations within the lagoon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H = 0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (p = 0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise FST values and the results of exact tests and AMOVA revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata