5 resultados para Gene expression profiles
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Dissertação de mest., Biologia Marinha (Aquacultura), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010
Resumo:
Tese de dout., Ciências Biotecnológicas (Biotecnologia Vegetal), Univ. do Algarve, 2009
Resumo:
The aquaculture industry aims at replacing significant amounts of marine fish oil by vegetable oils in fish diet. Dietary lipids have been shown to alter the fatty acid composition of bone compartments, which would impact the local production of factors controlling bone formation. Knowledge on the mechanisms underlying the nutritional regulation of bone metabolism is however scarce in fish. Two in vitro bone-derived cell systems developed from seabream (an important species for aquaculture in the Mediterranean region) vertebra, capable of in vitro mineralization and exhibiting prechondrocyte (VSa13) and pre-osteoblast (VSa16) phenotype, were used to assess the effect of certain polyunsaturated fatty acids (PUFAs; arachidonic (AA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids) on cell proliferation, extracellular matrix (ECM) mineralization and gene expression. While all PUFAs promoted morphological changes in both cell lines, VSa16 cell proliferation appeared to be stimulated by PUFAs in a dose dependent manner until 100M, whereas proliferation of VSa13 cells was impaired at concentrations above 10M. AA, EPA and DHA inhibited VSa13 ECM mineralization, alone and in combination, while VSa16 ECM mineralization was only inhibited by AA and EPA. DHA had the opposite effect, increasing mineralization almost by 2 fold. When EFAs were combined, DHA apparently compensated for the inhibitory effect of AA and EPA. Expression of marker genes for bone and lipid metabolisms has been investigated by qPCR and shown to be regulated in pre-osteoblasts exposed to individual PUFAs. Our results show that PUFAs are effectors of fish bone cell lines, altering cell morphology, proliferation and mineralization when added to culture medium. This work also demonstrates the suitability of our in vitro cell systems to get insights into mineralization-related effects of PUFAs in vivo and to evaluate the replacement of fish oils by vegetable oil sources in fish feeds.
Resumo:
Gla-rich protein (GRP) is a vitamin K-dependent protein related to bone and cartilage recently described. This protein is characterized by a large number of Gla (γ-carboxyglutamic acid) residues being the protein with the highest Gla content of any known protein. It was found in a widely variety of tissues but highest levels was found in skeletal and cartilaginous tissues. This small secreted protein was also expressed and accumulated in soft tissues and it was clearly associated with calcification pathologies in the same tissues. Although the biological importance of GRP remains to be elucidated, it was suggested a physiological role in cartilage development and calcification process during vertebrate skeleton formation. Using zebrafish, an accepted model to study skeletal development, we have described two grp paralog genes, grp1 and grp2, which exhibited distinct patterns of expression, suggesting different regulatory pathways for each gene. Gene synteny analysis showed that grp2 gene is more closely related to tetrapod grp, although grp1 gene was proposed to be the vertebrate ortholog by sequence comparison. In addition, we identified a functional promoter of grp2 gene and using a functional approach we confirmed the involvement of transcription factors from Sox family (Sox9b and Sox10) in the regulation of grp2 expression. In an effort to provide more information about the function of grp isoforms, we generated two zebrafish transgenic lines capable to overexpress conditionally grp genes and possible roles in the skeleton development were studied. To better understand GRP function a mammalian system was used and the analysis of knockout mice showed that GRP is involved in chondrocyte maturation and the absence of GRP is associated to proteoglycans loss in calcified articular cartilage. In addition, we detected differences in chondrogenesis markers in articular chondrocyte primary culture. Overall, our data suggest a main role for GRP on chondrocyte differentiation.
Resumo:
Dissertação de mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015