3 resultados para BONE-GROWTH

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tese de Doutoramento, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is widely recognized that protein restriction in utero may cause metabolic and endocrine adaptations, which may be of benefit to the neonate on a short-term basis but may cause adverse long-term conditions such as obesity, Type 2 diabetes, metabolic syndrome, hypertension and cardiovascular diseases. Adequate foetal and early post natal nutrient and energy supply is therefore essential for adult animal health, performance and life span. In this project it was investigated the progressive adaptations of the hepatic proteome in male mink offspring exposed to either a low protein (FL) or an adequate protein (FA) diet in utero fed either on a low protein (LP) or on an adequate (AP) diet from weaning until sexual maturity. Specifically, the aim was to determine the metabolic adaptations at selected phases of the animal’s first annual cycle and establish the metabolic priorities occurring during those phases. The three different morphological stages studied during the first year of development included, end of bone growth at 4 months of age, maximal fat accretion at 6 months of age and sexual maturity at 12 months of age. A reference proteome of mink liver coming from these different animal groups were generated using 2D electrophoresis coupled to MALDI-TOF analysis and the way in which dietary treatment affect their proteome was established. Approximately 330 proteins were detected in the mink liver proteome. A total of 27 comparisons were carried out between all different animal groups which resulted in 20 differentially expressed proteins. An extensive survey was conducted towards the characterization of these proteins including their subcellular localization, the biological processes in which they are involved and their molecular functions. This characterization allowed the identification of proteins in various processes including the glycolysis and fatty acid metabolism. The detailed analysis of the different dietary treatment animal groups was indicative of differences in metabolism and also to changes associated with development in mink.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of calcified tissues is a defining feature in vertebrate evolution. Investigating the evolution of proteins involved in tissue calcification should help elucidate how calcified tissues have evolved. The purpose of this study was to collect and compare sequences of matrix and bone γ-carboxyglutamic acid proteins (MGP and BGP, respectively) to identify common features and determine the evolutionary relationship between MGP and BGP. Thirteen cDNAs and genes were cloned using standard methods or reconstructed through the use of comparative genomics and data mining. These sequences were compared with available annotated sequences (a total of 48 complete or nearly complete sequences, 28 BGPs and 20 MGPs) have been identified across 32 different species (representing most classes of vertebrates), and evolutionarily conserved features in both MGP and BGP were analyzed using bioinformatic tools and the Tree-Puzzle software. We propose that: 1) MGP and BGP genes originated from two genome duplications that occurred around 500 and 400 million years ago before jawless and jawed fish evolved, respectively; 2) MGP appeared first concomitantly with the emergence of cartilaginous structures, and BGP appeared thereafter along with bony structures; and 3) BGP derives from MGP. We also propose a highly specific pattern definition for the Gla domain of BGP and MGP. Previous Section Next Section BGP1 (bone Gla protein or osteocalcin) and MGP (matrix Gla protein) belong to the growing family of vitamin K-dependent (VKD) proteins, the members of which are involved in a broad range of biological functions such as skeletogenesis and bone maintenance (BGP and MGP), hemostasis (prothrombin, clotting factors VII, IX, and X, and proteins C, S, and Z), growth control (gas6), and potentially signal transduction (proline-rich Gla proteins 1 and 2). VKD proteins are characterized by the presence of several Gla residues resulting from the post-translational vitamin K-dependent γ-carboxylation of specific glutamates, through which they can bind to calcium-containing mineral such as hydroxyapatite. To date, VKD proteins have only been clearly identified in vertebrates (1) although the presence of a γ-glutamyl carboxylase has been reported in the fruit fly Drosophila melanogaster (2) and in marine snails belonging to the genus Conus (3). Gla residues have also been found in neuropeptides from Conus venoms (4), suggesting a wider prevalence of γ-carboxylation.