8 resultados para Automatic focus
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Dissertação de Mestrado, Ciências da Linguagem, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2014
Resumo:
Painterly rendering has been linked to computer vision, but we propose to link it to human vision because perception and painting are two processes that are interwoven. Recent progress in developing computational models allows to establish this link. We show that completely automatic rendering can be obtained by applying four image representations in the visual system: (1) colour constancy can be used to correct colours, (2) coarse background brightness in combination with colour coding in cytochrome-oxidase blobs can be used to create a background with a big brush, (3) the multi-scale line and edge representation provides a very natural way to render fi ner brush strokes, and (4) the multi-scale keypoint representation serves to create saliency maps for Focus-of-Attention, and FoA can be used to render important structures. Basic processes are described, renderings are shown, and important ideas for future research are discussed.
Resumo:
Hypercolumns in area V1 contain frequency- and orientation-selective simple and complex cells for line (bar) and edge coding, plus end-stopped cells for key- point (vertex) detection. A single-scale (single-frequency) mathematical model of single and double end-stopped cells on the basis of Gabor filter responses was developed by Heitger et al. (1992 Vision Research 32 963-981). We developed an improved model by stabilising keypoint detection over neighbouring micro- scales.
Resumo:
The Portuguese Association of Automatic Control (APCA) organizes, every two years, the Portuguese Conference on Automatic Control. Its 6th edition (Controlo 2004) was held from 7 to 9 June, 2004 at the University of Algarve, Faro, Portugal, by its Centre for Intelligent Systems (CSI). CONTROLO 2004 International Program Committee (IPC) has decided, from the very start, to ask for submission of full draft papers, to encourage special sessions with well-defined themes, and for student papers. All papers have been reviewed by three separate reviewers. From the 122 contributions submitted, the IPC selected 89 oral papers, 20 special session papers, and 5 student posters. CONTROLO 2004 Technical Programme consists of 33 oral sessions (5 being special sessions) and 1 poster session, covering a broad range of control topics, both from theory and applications. The programme also includes three plenary lectures, given by leading experts in the field, Professors Ricardo Sanz, João Miranda Lemos and Rolf Isermann.
Resumo:
The introduction of parallel processing architectures allowed the real time impelemtation of more sophisticated control algorithms with tighter specifications in terms of sampling time. However, to take advantage of the processing power of these architectures the control engeneer, due to the lack of appropriate tools, must spend a considerable amount of time in the parallelizaton of the control algorithm.
Resumo:
Neural networks and genetic algorithms have been in the past successfully applied, separately, to controller turning problems. In this paper we propose to combine its joint use, by exploiting the nonlinear mapping capabilites of neural networks to model objective functions, and to use them to supply their values to a genetic algorithm which performs on-line minimization.
Resumo:
In this work, a comprehensive review on automatic analysis of Proteomics and Genomics images is presented. Special emphasis is given to a particularly complex image produced by a technique called Two-Dimensional Gel Electrophoresis (2-DE), with thousands of spots (or blobs). Automatic methods for the detection, segmentation and matching of blob like features are discussed and proposed. In particular, a very robust procedure was achieved for processing 2-DE images, consisting mainly of two steps: a) A very trustworthy new approach for the automatic detection and segmentation of spots, based on the Watershed Transform, without any foreknowledge of spot shape or size, and without user intervention; b) A new method for spot matching, based on image registration, that performs well for either global or local distortions. The results of the proposed methods are compared to state-of-the-art academic and commercial products.
Resumo:
Revenue Management’s most cited definitions is probably “to sell the right accommodation to the right customer, at the right time and the right price, with optimal satisfaction for customers and hoteliers”. Smart Revenue Management (SRM) is a project, which aims the development of smart automatic techniques for an efficient optimization of occupancy and rates of hotel accommodations, commonly referred to, as revenue management. One of the objectives of this project is to demonstrate that the collection of Big Data, followed by an appropriate assembly of functionalities, will make possible to generate a Data Warehouse necessary to produce high quality business intelligence and analytics. This will be achieved through the collection of data extracted from a variety of sources, including from the web. This paper proposes a three stage framework to develop the Big Data Warehouse for the SRM. Namely, the compilation of all available information, in the present case, it was focus only the extraction of information from the web by a web crawler – raw data. The storing of that raw data in a primary NoSQL database, and from that data the conception of a set of functionalities, rules, principles and semantics to select, combine and store in a secondary relational database the meaningful information for the Revenue Management (Big Data Warehouse). The last stage will be the principal focus of the paper. In this context, clues will also be giving how to compile information for Business Intelligence. All these functionalities contribute to a holistic framework that, in the future, will make it possible to anticipate customers and competitor’s behavior, fundamental elements to fulfill the Revenue Management