14 resultados para Attention Perception
em SAPIENTIA - Universidade do Algarve - Portugal
Resumo:
Hypercolumns in area V1 contain frequency- and orientation-selective simple and complex cells for line (bar) and edge coding, plus end-stopped cells for key- point (vertex) detection. A single-scale (single-frequency) mathematical model of single and double end-stopped cells on the basis of Gabor filter responses was developed by Heitger et al. (1992 Vision Research 32 963-981). We developed an improved model by stabilising keypoint detection over neighbouring micro- scales.
Resumo:
In this paper we present a brief overview of the processing in the primary visual cortex, the multi-scale line/edge and keypoint representations, and a model of brightness perception. This model, which is being extended from 1D to 2D, is based on a symbolic line and edge interpretation: lines are represented by scaled Gaussians and edges by scaled, Gaussian-windowed error functions. We show that this model, in combination with standard techniques from graphics, provides a very fertile basis for non-photorealistic image rendering.
Resumo:
Tese de Doutoramento, Turismo, Faculdade de Economia, Universidade do Algarve, 2016
Resumo:
Painterly rendering has been linked to computer vision, but we propose to link it to human vision because perception and painting are two processes that are interwoven. Recent progress in developing computational models allows to establish this link. We show that completely automatic rendering can be obtained by applying four image representations in the visual system: (1) colour constancy can be used to correct colours, (2) coarse background brightness in combination with colour coding in cytochrome-oxidase blobs can be used to create a background with a big brush, (3) the multi-scale line and edge representation provides a very natural way to render fi ner brush strokes, and (4) the multi-scale keypoint representation serves to create saliency maps for Focus-of-Attention, and FoA can be used to render important structures. Basic processes are described, renderings are shown, and important ideas for future research are discussed.
Resumo:
Few models can explain Mach bands (Pessoa, 1996 Vision Research 36 3205-3227) . Our own employs multiscale line and edge coding by simple and complex cells. Lines are interpreted by Gaussian functions, edges by bipolar, Gaussian-truncated errorfunctions. Widths of these functions are coupled to the scales of the underlying cells and the amplitudes are determined by their responses.
Resumo:
Keypoints (junctions) provide important information for focus-of-attention (FoA) and object categorization/recognition. In this paper we analyze the multi-scale keypoint representation, obtained by applying a linear and quasi-continuous scaling to an optimized model of cortical end-stopped cells, in order to study its importance and possibilities for developing a visual, cortical architecture.We show that keypoints, especially those which are stable over larger scale intervals, can provide a hierarchically structured saliency map for FoA and object recognition. In addition, the application of non-classical receptive field inhibition to keypoint detection allows to distinguish contour keypoints from texture (surface) keypoints.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.
Resumo:
There are roughly two processing systems: (1) very fast gist vision of entire scenes, completely bottom-up and data driven, and (2) Focus-of-Attention (FoA) with sequential screening of specific image regions and objects. The latter system has to be sequential because unnormalised input objects must be matched against normalised templates of canonical object views stored in memory, which involves dynamic routing of features in the visual pathways.
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extractions. Simple, complex and end-stopped cells tuned to different spatial frequencies (scales) and/or orientations provide input for line, edge and keypoint detection. This yields a rich, multi-scale object representation that can be stored in memory in order to identify objects. The multi-scale, keypoint-based saliency maps for Focus-of-Attention can be explored to obtain face detection and normalization, after which face recognition can be achieved using the line/edge representation. In this paper, we focus only on face normalization, showing that multi-scale keypoints can be used to construct canonical representations of faces in memory.
Resumo:
Painterly rendering (non-photorealistic rendering or NPR) aims at translating photographs into paintings with discrete brush strokes, simulating certain techniques (im- or expressionism) and media (oil or watercolour). Recently, our research into visual perception and models of processes in the visual cortex resulted in a new rendering scheme, in which detected lines and edges at different scales are translated into brush strokes of different sizes. In order to prepare a version which is suitable for many users, including children, the design of the interface in terms of window and menu system is very important. Discussions with artists and non-artists led to three design criteria: (1) the interface must reflect the procedures and possibilities that real painters follow and use, (2) it must be based on only one window, and (3) the menu system must be very simple, avoiding a jungle of menus and sub-menus. This paper explains the interface that has been developed.
Resumo:
Tese de dout., Engenharia Electrónica e de Computadores, Faculdade de Ciência e Tecnologia, Universidade do Algarve, 2007
Resumo:
Empirical studies concerning face recognition suggest that faces may be stored in memory by a few canonical representations. Models of visual perception are based on image representations in cortical area V1 and beyond, which contain many cell layers for feature extraction. Simple, complex and end-stopped cells provide input for line, edge and keypoint detection. Detected events provide a rich, multi-scale object representation, and this representation can be stored in memory in order to identify objects. In this paper, the above context is applied to face recognition. The multi-scale line/edge representation is explored in conjunction with keypoint-based saliency maps for Focus-of-Attention. Recognition rates of up to 96% were achieved by combining frontal and 3/4 views, and recognition was quite robust against partial occlusions.
Resumo:
Complete image ontology can be obtained by formalising a top-down meta-language wich must address all possibilities, from global message and composition to objects and local surface properties.
Resumo:
Dissertação de mestrado, Estudos Literários e Artísticos, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2015