2 resultados para Normalization-based optimization
em Research Open Access Repository of the University of East London.
Resumo:
Reverse engineering is usually the stepping stone of a variety of at-tacks aiming at identifying sensitive information (keys, credentials, data, algo-rithms) or vulnerabilities and flaws for broader exploitation. Software applica-tions are usually deployed as identical binary code installed on millions of com-puters, enabling an adversary to develop a generic reverse-engineering strategy that, if working on one code instance, could be applied to crack all the other in-stances. A solution to mitigate this problem is represented by Software Diversity, which aims at creating several structurally different (but functionally equivalent) binary code versions out of the same source code, so that even if a successful attack can be elaborated for one version, it should not work on a diversified ver-sion. In this paper, we address the problem of maximizing software diversity from a search-based optimization point of view. The program to protect is subject to a catalogue of transformations to generate many candidate versions. The problem of selecting the subset of most diversified versions to be deployed is formulated as an optimisation problem, that we tackle with different search heuristics. We show the applicability of this approach on some popular Android apps.
Resumo:
The paper details on-chip inductor optimization for a reconfigurable continuous-time delta-sigma (Δ-Σ) modulator based radio-frequency analog-to-digital converter. Inductor optimisation enables the Δ-Σ modulator with Q enhanced LC tank circuits employing a single high Q-factor on-chip inductor and lesser quantizer levels thereby reducing the circuit complexity for excess loop delay, power dissipation and dynamic element matching. System level simulations indicate at a Q-factor of 75 Δ- Σ modulator with a 3-level quantizer achieves dynamic ranges of 106, 82 dB and 84 dB for RFID, TETRA, and Galileo over bandwidths of 200 kHz, 10 MHz and 40 MHz respectively.