3 resultados para Learning techniques
em Research Open Access Repository of the University of East London.
Resumo:
This paper outlines the development of a crosscorrelation algorithm and a spiking neural network (SNN) for sound localisation based on real sound recorded in a noisy and dynamic environment by a mobile robot. The SNN architecture aims to simulate the sound localisation ability of the mammalian auditory pathways by exploiting the binaural cue of interaural time difference (ITD). The medial superior olive was the inspiration for the SNN architecture which required the integration of an encoding layer which produced biologically realistic spike trains, a model of the bushy cells found in the cochlear nucleus and a supervised learning algorithm. The experimental results demonstrate that biologically inspired sound localisation achieved using a SNN can compare favourably to the more classical technique of cross-correlation.
Resumo:
This multi-perspectival Interpretive Phenomenological Analysis (IPA) study explored how people in the ‘networks of concern’ talked about how they tried to make sense of the challenging behaviours of four children with severe learning disabilities. The study also aimed to explore what affected relationships between people. The study focussed on 4 children through interviewing their mothers, their teachers and the Camhs Learning Disability team members who were working with them. Two fathers also joined part of the interviews. All interviews were conducted separately using a semi-structured approach. IPA allowed both a consideration of the participant’s lived experiences and ‘objects of concern’ and a deconstruction of the multiple contexts of people’s lives, with a particular focus on disability. The analysis rendered five themes: the importance of love and affection, the difficulties, and the differences of living with a challenging child, the importance of being able to make sense of the challenges and the value of good relationships between people. Findings were interpreted through the lens of CMM (Coordinated Management of Meaning), which facilitated a systemic deconstruction and reconstruction of the findings. The research found that making sense of the challenges was a key concern for parents. Sharing meanings were important for people’s relationships with each other, including employing diagnostic and behavioural narratives. The importance of context is also highlighted including a consideration of how societal views of disability have an influence on people in the ‘network of concern’ around the child. A range of systemic approaches, methods and techniques are suggested as one way of improving services to these children and their families. It is suggested that adopting a ‘both/and’ position is important in such work - both applying evidence based approaches and being alert to and exploring the different ways people try and make sense of the children’s challenges. Implications for practice included helping professionals be alert to their constructions and professional narratives, slowing the pace with families, staying close to the concerns of families and addressing network issues.
Resumo:
Conventional taught learning practices often experience difficulties in keeping students motivated and engaged. Video games, however, are very successful at sustaining high levels of motivation and engagement through a set of tasks for hours without apparent loss of focus. In addition, gamers solve complex problems within a gaming environment without feeling fatigue or frustration, as they would typically do with a comparable learning task. Based on this notion, the academic community is keen on exploring methods that can deliver deep learner engagement and has shown increased interest in adopting gamification – the integration of gaming elements, mechanics, and frameworks into non-game situations and scenarios – as a means to increase student engagement and improve information retention. Its effectiveness when applied to education has been debatable though, as attempts have generally been restricted to one-dimensional approaches such as transposing a trivial reward system onto existing teaching materials and/or assessments. Nevertheless, a gamified, multi-dimensional, problem-based learning approach can yield improved results even when applied to a very complex and traditionally dry task like the teaching of computer programming, as shown in this paper. The presented quasi-experimental study used a combination of instructor feedback, real time sequence of scored quizzes, and live coding to deliver a fully interactive learning experience. More specifically, the “Kahoot!” Classroom Response System (CRS), the classroom version of the TV game show “Who Wants To Be A Millionaire?”, and Codecademy’s interactive platform formed the basis for a learning model which was applied to an entry-level Python programming course. Students were thus allowed to experience multiple interlocking methods similar to those commonly found in a top quality game experience. To assess gamification’s impact on learning, empirical data from the gamified group were compared to those from a control group who was taught through a traditional learning approach, similar to the one which had been used during previous cohorts. Despite this being a relatively small-scale study, the results and findings for a number of key metrics, including attendance, downloading of course material, and final grades, were encouraging and proved that the gamified approach was motivating and enriching for both students and instructors.