5 resultados para Quasilinear Ordinary Differential Equation

em Reposit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with fractional differential equations, with dependence on a Caputo fractional derivative of real order. The goal is to show, based on concrete examples and experimental data from several experiments, that fractional differential equations may model more efficiently certain problems than ordinary differential equations. A numerical optimization approach based on least squares approximation is used to determine the order of the fractional operator that better describes real data, as well as other related parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new discretization for the Hadamard fractional derivative, that simplifies the computations. We then apply the method to solve a fractional differential equation and a fractional variational problem with dependence on the Hadamard fractional derivative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain a generalized Euler–Lagrange differential equation and transversality optimality conditions for Herglotz-type higher-order variational problems. Illustrative examples of the new results are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the existence of solutions of quasilinear elliptic systems involving $N$ equations and a measure on the right hand side, with the form $$\left\{\begin{array}{ll} -\sum_{i=1}^n \frac{\partial}{\partial x_i}\left(\sum\limits_{\beta=1}^{N}\sum\limits_{j=1}^{n}% a_{i,j}^{\alpha,\beta}\left( x,u\right)\frac{\partial}{\partial x_j}u^\beta\right)=\mu^\alpha& \mbox{ in }\Omega ,\\ u=0 & \mbox{ on }\partial\Omega, \end{array}\right.$$ where $\alpha\in\{1,\dots,N\}$ is the equation index, $\Omega$ is an open bounded subset of $\mathbb{R}^{n}$, $u:\Omega\rightarrow\mathbb{R}^{N}$ and $\mu$ is a finite Randon measure on $\mathbb{R}^{n}$ with values into $\mathbb{R}^{N}$. Existence of a solution is proved for two different sets of assumptions on $A$. Examples are provided that satisfy our conditions, but do not satisfy conditions required on previous works on this matter.