4 resultados para variational methods

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta dissertação estuda em detalhe três problemas elípticos: (I) uma classe de equações que envolve o operador Laplaciano, um termo singular e nãolinearidade com o exponente crítico de Sobolev, (II) uma classe de equações com singularidade dupla, o expoente crítico de Hardy-Sobolev e um termo côncavo e (III) uma classe de equações em forma divergente, que envolve um termo singular, um operador do tipo Leray-Lions, e uma função definida nos espaços de Lorentz. As não-linearidades consideradas nos problemas (I) e (II), apresentam dificuldades adicionais, tais como uma singularidade forte no ponto zero (de modo que um "blow-up" pode ocorrer) e a falta de compacidade, devido à presença do exponente crítico de Sobolev (problema (I)) e Hardy-Sobolev (problema (II)). Pela singularidade existente no problema (III), a definição padrão de solução fraca pode não fazer sentido, por isso, é introduzida uma noção especial de solução fraca em subconjuntos abertos do domínio. Métodos variacionais e técnicas da Teoria de Pontos Críticos são usados para provar a existência de soluções nos dois primeiros problemas. No problema (I), são usadas uma combinação adequada de técnicas de Nehari, o princípio variacional de Ekeland, métodos de minimax, um argumento de translação e estimativas integrais do nível de energia. Neste caso, demonstramos a existência de (pelo menos) quatro soluções não triviais onde pelo menos uma delas muda de sinal. No problema (II), usando o método de concentração de compacidade e o teorema de passagem de montanha, demostramos a existência de pelo menos duas soluções positivas e pelo menos um par de soluções com mudança de sinal. A abordagem do problema (III) combina um resultado de surjectividade para operadores monótonos, coercivos e radialmente contínuos com propriedades especiais do operador de tipo Leray- Lions. Demonstramos assim a existência de pelo menos, uma solução no espaço de Lorentz e obtemos uma estimativa para esta solução.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp 2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a (p, q)− equation (1 < q < p, p ≥ 2) with a parametric concave term and a (p − 1)− linear perturbation. We show that the problem have five nontrivial smooth solutions: four of constant sign and the fifth nodal. When q = 2 (i.e., (p, 2) equation) we show that the problem has six nontrivial smooth solutions, but we do not specify the sign of the sixth solution. Our approach uses variational methods, together with truncation and comparison techniques and Morse theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.