4 resultados para suspended organic matter
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Water-soluble organic matter (WSOM) from atmospheric particles comprises a complex array of molecular structures that play an important role on the physic-chemical properties of atmospheric particles and, therefore, are linked to several global-relevant atmospheric processes which impact the climate and public health. Due to the large variety of sources and formation processes, adequate knowledge on WSOM composition and its effects on the properties of atmospheric aerosol are still limited. Therefore, this thesis aims at providing new insights on the molecular composition of WSOM from fine atmospheric aerosols typical of an urban area (Aveiro, Portugal). In a first step, adsorption phenomena of semivolatile organic compounds on quartz fibre filters employed in the collection of atmospheric aerosols were assessed. Afterwards, atmospheric aerosol samples were collected during fifteen months, on a weekly basis. A mass balance of aerosol samples was performed in order to set the relative contribution of elemental carbon, WSOM and water-insoluble organic matter to the aerosol mass collected at the urban area of Aveiro, with a special focus on the assessment of the influence of different meteorological conditions. In order to assess the chemical complexity of the WSOM from urban aerosols, their structural characteristics were studied by means of Fourier transform infrared infrared - Attenuated Total Reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies, as well as their elemental composition. The structural characterization of aerosol WSOM samples collected in the urban area highlighted a highly complex mixture of functional groups. It was concluded that aliphatic and aromatic structures, hydroxyl groups and carboxyl groups are characteristic to all samples. The semi-quantitative assessment of the CPMAS 13C NMR data showed different distributions of the various functional groups between the aerosol samples collected at different seasons. Moreover, the presence of signals typical of lignin-derived structures in both CPMAS 13C NMR and FTIR-ATR spectra of the WSOM samples from the colder seasons, highlights the major contribution of biomass burning processes in domestic fireplaces, during low temperature conditions, into the bulk chemical properties of WSOM from urban aerosols. A comprehensive two-dimensional liquid chromatography (LC x LC) method, on-line coupled to a diode array, fluorescence, and evaporative light scattering detectors, was employed for resolving the chemical heterogeneity of the aerosol WSOM samples and, simultaneously, to map the hydrophobicity versus the molecular weight distribution of the samples. The LC x LC method employed a mixed-mode hydrophilic interaction column operating under aqueous reversed phase mode in the first dimension, and a size-exclusion column in the second dimension, which was found to be useful for separating the aerosol WSOM samples into various fractions with distinct molecular weight and hydrophobic features. The estimative of the average molecular weight (Mw) distribution of the urban aerosol WSOM samples ranged from 48 to 942 Da and from 45 to 1241 Da in terms of UV absorption and fluorescence detection, respectively. Findings suggest that smaller Mw group fractions seem to be related to a more hydrophobic nature.
Resumo:
Sea salt is a natural product obtained from the evaporation of seawater in saltpans due to the combined effect of wind and sunlight. Nowadays, there is a growing interest for protection and re-valorisation of saltpans intrinsically associated to the quality of sea salt that can be evaluated by its physico-chemical properties. These man-made systems can be located in different geographical areas presenting different environmental surroundings. During the crystallization process, organic compounds coming from these surroundings can be incorporated into sea salt crystals, influencing their final composition. The organic matter associated to sea salt arises from three main sources: algae, surrounding bacterial community, and anthropogenic activity. Based on the hypothesis that sea salt contains associated organic compounds that can be used as markers of the product, including saltpans surrounding environment, the aim of this PhD thesis was to identify these compounds. With this purpose, this work comprised: 1) a deep characterisation of the volatile composition of sea salt by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME/GCGC–ToFMS) methodology, in search of potential sea salt volatile markers; 2) the development of a methodology to isolate the polymeric material potentially present in sea salt, in amounts that allow its characterisation in terms of polysaccharides and protein; and 3) to explore the possible presence of triacylglycerides. The high chromatographic resolution and sensitivity of GC×GC–ToFMS enabled the separation and identification of a higher number of volatile compounds from sea salt, about three folds, compared to unidimentional chromatography (GC–qMS). The chromatographic contour plots obtained revealed the complexity of marine salt volatile composition and confirmed the relevance of GC×GC–ToFMS for this type of analysis. The structured bidimentional chromatographic profile arising from 1D volatility and 2D polarity was demonstrated, allowing more reliable identifications. Results obtained for analysis of salt from two locations in Aveiro and harvested over three years suggest the loss of volatile compounds along the time of storage of the salt. From Atlantic Ocean salts of seven different geographical origins, all produced in 2007, it was possible to identify a sub-set of ten compounds present in all salts, namely 6-methyl-5-hepten-2-one, 2,2,6-trimethylcyclohexanone, isophorone, ketoisophorone, β-ionone-5,6-epoxide, dihydroactinidiolide, 6,10,14-trimethyl-2-pentadecanone, 3-hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate, 2,4,4-trimethylpentane-1,3-diyl bis(2-methylpropanoate), and 2-ethyl-1-hexanol. These ten compounds were considered potential volatile markers of sea salt. Seven of these compounds are carotenoid-derived compounds, and the other three may result from the integration of compounds from anthropogenic activity as metabolites of marine organisms. The present PhD work also allowed the isolation and characterisation, for the first time, of polymeric material from sea salt, using 16 Atlantic Ocean salts. A dialysis-based methodology was developed to isolate the polymeric material from sea salt in amounts that allowed its characterisation. The median content of polymeric material isolated from the 16 salts was 144 mg per kg of salt, e.g. 0.014% (w/w). Mid-infrared spectroscopy and thermogravimetry revealed the main occurrence of sulfated polysaccharides, as well as the presence of protein in the polymeric material from sea salt. Sea salt polysaccharides were found to be rich in uronic acid residues (21 mol%), glucose (18), galactose (16), and fucose (13). Sulfate content represented a median of 45 mol%, being the median content of sulfated polysaccharides 461 mg/g of polymeric material, which accounted for 66 mg/kg of dry salt. Glycosidic linkage composition indicates that the main sugar residues that could carry one or more sulfate groups were identified as fucose and galactose. This fact allowed to infer that the polysaccharides from sea salt arise mainly from algae, due to their abundance and composition. The amino acid profile of the polymeric material from the 16 Atlantic Ocean salts showed as main residues, as medians, alanine (25 mol%), leucine (14), and valine (14), which are hydrophobic, being the median protein content 35 mg/g, i.e. 4,9 mg per kg of dry salt. Beside the occurrence of hydrophobic volatile compounds in sea salt, hydrophobic non-volatile compounds were also detected. Triacylglycerides were obtained from sea salt by soxhlet extraction with n-hexane. Fatty acid composition revealed palmitic acid as the major residue (43 mol%), followed by stearic (13), linolenic (13), oleic (12), and linoleic (9). Sea salt triacylglycerides median content was 1.5 mg per kg of dry salt. Both protein and triacylglycerides seem to arise from macro and microalgae, phytoplankton and cyanobacteria, due to their abundance and composition. Despite the variability resulting from saltpans surrounding environment, this PhD thesis allowed the identification of a sea salt characteristic organic compounds profile based on volatile compounds, polysaccharides, protein, and triacylglycerides.
Resumo:
Neste trabalho foi efectuada uma avaliação integrada usando descritores sedimentares e biológicos ao nível da espécie e da comunidade e índices bióticos de síntese para o traçamento do enriquecimento orgânico numa região, com características dispersivas, da costa Oeste de Portugal. Na área estudada existem gradientes ambientais e biológicos relacionados com a heterogeneidade da paisagem sedimentar, a qual inclui sedimentos desde areias finas limpas a vasas. Contudo, na área próxima do emissário, esta paisagem é mais homogénea e constituída por areia fina com baixo teor em finos. Nesta região, alguns dos descritores estudados deram uma indicação coerente de alterações ambientais associadas ao enriquecimento orgânico. O potencial de oxidação - redução mostrou valores negativos até 250 m do emissário, o que indicia que a degradação da matéria orgânica que entra no sistema cria condições reduzidas no sedimento. Os isótopos estáveis de carbono e azoto no sedimento diferenciam a área mais próxima do emissário, que apresenta uma depleção de acordo com uma origem terrestre da matéria orgânica naquela parte da plataforma. Uma imagem similar foi obtida pela análise dos isótopos estáveis na macrofauna que diagnosticou a origem terrestre da matéria orgânica consumida. A composição específica e a abundância das comunidades bentónicas também são significativamente diferentes junto ao emissário, onde são dominadas por espécies oportunistas, tolerantes ao enriquecimento orgânico. No entanto, os índices bióticos em validação no âmbito da implementação da Directiva Quadro da Água, não foram eficientes a mostrar as alterações bentónicas associadas ao enriquecimento orgânico apesar de alguns índices se basearem nos limiares de tolerância/sensibilidade a este tipo de perturbação. Apesar deste caso de estudo reflectir um enriquecimento orgânico moderado, uma vez que não foram detectadas alterações sedimentares ou acumulação de matéria orgânica, nem um significativo empobrecimento das comunidades biológicas junto ao emissário, a análise ao nível dos índices bióticos de síntese pode levar à perda de informação essencial e, portanto, prejudicar a nossa capacidade de diagnóstico devendo ser usados com cuidado. A análise do conjunto de dados da composição específica forneceu uma imagem mais precisa da perturbação ambiental e descritores específicos, tais como os isótopos estáveis, permitiram uma melhor compreensão da extensão espacial do enriquecimento orgânico.
Resumo:
Environmental transport of pollutants comprises distinct processes such as volatilization, leaching and surface runoff. Sorption is one of the most important phenomena that affects leaching, and thus the fate of hydrophobic organic pollutants in soils and also control their distribution in the soil/water environment. The work developed focuses the optimization of analytical techniques for monitoring the sorption behaviour of organic pollutants, 17α- ethinylestradiol (EE2) and atrazine, and their fate in aqueous environment. Initially, the development of several analytical techniques, such as micellar electrokinetic chromatography, spectral deconvolution, using UV-Vis and fluorescence spectroscopy, and also enzyme linked immunosorbent assay was performed. Optimization, method performance and recovery tests are described and results discussed. Moreover, in order to evaluate the applicability of the previously optimized method, atrazine and EE2 sorption to soil samples was performed. The work developed provide several options, in terms of methodology to follow sorption of atrazine onto soils, however the choice depends on the laboratory conditions and on the analyst preferences. The advantages and disadvantages of each methodology should be evaluated first. The second part of this work consisted in the sorption behaviour study of those two different hydrophobic organic pollutants onto different soil samples. Soil organic matter chemical characterization, being essential to understand the binding mechanism responsible for the interactions, was made. The results of atrazine binding to organic matter pointed out that carboxyl units and aromaticrich organic matter are the most efficient binding agents for atrazine. EE2 adsorbs strongly to soil organic matter and is mainly stabilized by hydrophobic interactions, through aromatic nuclei face to face with surface and/or another EE2 molecule association. Farmyard manure soil contains higher aromatic and carboxyl units, indicating that this type of manure can be effectively used to minimize the residual toxicity of EE2 and atrazine present in soils, increasing the sorption and reducing leaching onto water resources. Since the final destination of organic pollutants can be ground, surface and/or waste water, atrazine and 17α-ethinylestradiol were quantified in several water samples.