6 resultados para residual gas analysis

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of this work was to monitor a set of physical-chemical properties of heavy oil procedural streams through nuclear magnetic resonance spectroscopy, in order to propose an analysis procedure and online data processing for process control. Different statistical methods which allow to relate the results obtained by nuclear magnetic resonance spectroscopy with the results obtained by the conventional standard methods during the characterization of the different streams, have been implemented in order to develop models for predicting these same properties. The real-time knowledge of these physical-chemical properties of petroleum fractions is very important for enhancing refinery operations, ensuring technically, economically and environmentally proper refinery operations. The first part of this work involved the determination of many physical-chemical properties, at Matosinhos refinery, by following some standard methods important to evaluate and characterize light vacuum gas oil, heavy vacuum gas oil and fuel oil fractions. Kinematic viscosity, density, sulfur content, flash point, carbon residue, P-value and atmospheric and vacuum distillations were the properties analysed. Besides the analysis by using the standard methods, the same samples were analysed by nuclear magnetic resonance spectroscopy. The second part of this work was related to the application of multivariate statistical methods, which correlate the physical-chemical properties with the quantitative information acquired by nuclear magnetic resonance spectroscopy. Several methods were applied, including principal component analysis, principal component regression, partial least squares and artificial neural networks. Principal component analysis was used to reduce the number of predictive variables and to transform them into new variables, the principal components. These principal components were used as inputs of the principal component regression and artificial neural networks models. For the partial least squares model, the original data was used as input. Taking into account the performance of the develop models, by analysing selected statistical performance indexes, it was possible to conclude that principal component regression lead to worse performances. When applying the partial least squares and artificial neural networks models better results were achieved. However, it was with the artificial neural networks model that better predictions were obtained for almost of the properties analysed. With reference to the results obtained, it was possible to conclude that nuclear magnetic resonance spectroscopy combined with multivariate statistical methods can be used to predict physical-chemical properties of petroleum fractions. It has been shown that this technique can be considered a potential alternative to the conventional standard methods having obtained very promising results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O metano é um gás de estufa potente e uma importante fonte de energia. A importância global e impacto em zonas costeiras de acumulações e escape de gás metano são ainda pouco conhecidas. Esta tese investiga acumulações e escape de gás em canais de maré da Ria de Aveiro com dados de cinco campanhas de reflexão sísmica de alta resolução realizadas em 1986, 1999, 2002 e 2003. Estas incluem três campanhas de Chirp (RIAV99, RIAV02 e RIAV02A) e duas campanhas de Boomer (VOUGA86 e RIAV03). O processamento dos dados de navegação incluíram filtros de erros, correcções de sincronização de relógios de sistemas de aquisição de dados, ajuste de “layback” e estimativa da posição de “midpoint”. O processamento do sinal sísmico consistiu na correcção das amplitudes, remoção de ruído do tipo “burst”, correcções estáticas, correcção do “normal move-out”, filtragem passabanda, desconvolução da assinatura e migração Stolt F-K. A análise da regularidade do trajecto de navegação, dos desfasamentos entre horizontes e dos modelos de superfícies foi utilizada para controlo de qualidade, e permitiu a revisão e melhoria dos parâmetros de processamento. A heterogeneidade da cobertura sísmica, da qualidade do sinal, da penetração e da resolução, no seu conjunto constrangeram o uso dos dados a interpretações detalhadas, mas locais, de objectos geológicos da Ria. É apresentado um procedimento para determinar a escolha de escalas adequadas para modelar os objectos geológicos, baseado na resolução sísmica, erros de posicionamento conhecidos e desfasamentos médios entre horizontes. As evidências de acumulação e escape de gás na Ria de Aveiro incluem turbidez acústica, reflexões reforçadas, cortinas acústicas, domas, “pockmarks” e alinhamentos de “pockmarks” enterradas, horizontes perturbados e plumas acústicas na coluna de água (flares). A estratigrafia e a estrutura geológica controlam a distribuição e extensão das acumulações e escape de gás. Ainda assim, nestes sistemas de baixa profundidade de água, as variações da altura de maré têm um impacto significativo na detecção de gás com métodos acústicos, através de alterações nas amplitudes originais de reflexões reforçadas, turbidez acústica e branqueamento acústico em zonas com gás. Os padrões encontrados confirmam que o escape de bolhas de gás é desencadeado pela descida da maré. Há acumulações de gás em sedimentos Holocénicos e no substrato de argilas e calcários do Mesozóico. Evidências directas de escape de gás em sondagens em zonas vizinhas, mostraram gás essencialmente biogénico. A maioria do gás na área deve ter sido gerado em sedimentos lagunares Holocénicos. No entanto, a localização e geometria de estruturas de escape de fluidos em alguns canais de maré, seguem o padrão de fracturas do substrato Mesozóico, indicando uma possível fonte mais profunda de gás e que estas fracturas funcionam como condutas preferenciais de migração dos fluidos e exercem um controlo estrutural na ocorrência de gás na Ria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Os incêndios florestais são uma importante fonte de emissão de compostos gasosos e de aerossóis. Em Portugal, onde a maioria dos incêndios ocorre no norte e centro do país, os incêndios destroem todos os anos milhares de hectares, com importantes perdas em termos económicos, de vidas humanas e qualidade ambiental. As emissões podem alterar consideravelmente a química da atmosfera, degradar a qualidade do ar e alterar o clima. Contudo, a informação sobre as caraterísticas das emissões dos incêndios florestais nos países do Mediterrâneo é limitada. Tanto a nível nacional como internacional, existe um interesse crescente na elaboração de inventários de emissões e de regulamentos sobre as emissões de carbono para a atmosfera. Do ponto de vista atmosférico da monitorização atmosférica, os incêndios são considerados um desafio, dada a sua variabilidade temporal e espacial, sendo de esperar um aumento da sua frequência, dimensão e severidade, e também porque as estimativas de emissões dependem das caraterísticas dos biocombustíveis e da fase de combustão. O objetivo deste estudo foi quantificar e caraterizar as emissões de gases e aerossóis de alguns dos mais representativos incêndios florestais que ocorreram no centro de Portugal nos verões de 2009 e de 2010. Efetuou-se a colheita de amostras de gases e de duas frações de partículas (PM2.5 e PM2.5-10) nas plumas de fumo em sacos Tedlar e em filtros de quartzo acoplados a um amostrador de elevado volume, respetivamente. Os hidrocarbonetos totais (THC) e óxidos de carbono (CO e CO2) nas amostras gasosas foram analisados em instrumentos automáticos de ionização de chama e detetores não dispersivos de infravermelhos, respetivamente. Para algumas amostras, foram também quantificados alguns compostos de carbonilo após reamostragem do gás dos sacos Tedlar em cartuchos de sílica gel revestidos com 2,4-dinitrofenilhidrazina (DNPH), seguida de análise por cromatografia líquida de alta resolução. Nas partículas, analisou-se o carbono orgânico e elementar (técnica termo-óptica), iões solúveis em água (cromatografia iónica) e elementos (espectrometria de massa com plasma acoplado por indução ou análise instrumental por ativação com neutrões). A especiação orgânica foi obtida por cromatografia gasosa acoplada a espectrometria de massa após extração com recurso a vários solventes e separação dos extratos orgânicos em diversas classes de diferentes polaridades através do fracionamento com sílica gel. Os fatores de emissão do CO e do CO2 situaram-se nas gamas 52-482 e 822-1690 g kg-1 (base seca), mostrando, respetivamente, correlação negativa e positiva com a eficiência de combustão. Os fatores de emissão dos THC apresentaram valores mais elevados durante a fase de combustão latente sem chama, oscilando entre 0.33 e 334 g kg-1 (base seca). O composto orgânico volátil oxigenado mais abundante foi o acetaldeído com fatores de emissão que variaram desde 1.0 até 3.2 g kg-1 (base seca), seguido pelo formaldeído e o propionaldeído. Observou-se que as emissões destes compostos são promovidas durante a fase de combustão latente sem chama. Os fatores de emissão de PM2.5 e PM10 registaram valores entre 0.50-68 e 0.86-72 g kg-1 (base seca), respetivamente. A emissão de partículas finas e grosseiras é também promovida em condições de combustão lenta. As PM2.5 representaram cerca de 90% da massa de partículas PM10. A fração carbonosa das partículas amostradas em qualquer dos incêndios foi claramente dominada pelo carbono orgânico. Foi obtida uma ampla gama de rácios entre o carbono orgânico e o carbono elementar, dependendo das condições de combustão. Contudo, todos os rácios refletiram uma maior proporção de carbono orgânico em relação ao carbono elementar, típica das emissões de queima de biomassa. Os iões solúveis em água obtidos nas partículas da pluma de fumo contribuíram com valores até 3.9% da massa de partículas PM2.5 e 2.8% da massa de partículas de PM2.5-10. O potássio contribuiu com valores até 15 g mg-1 PM2.5 e 22 g mg-1 PM2.5-10, embora em massa absoluta estivesse maioritariamente presente nas partículas finas. Os rácios entre potássio e carbono elementar e entre potássio e carbono orgânico obtidos nas partículas da pluma de fumo enquadram-se na gama de valores relatados na literatura para emissões de queima de biomassa. Os elementos detetados nas amostras representaram, em média, valores até 1.2% e 12% da massa de PM2.5 e PM2.5-10, respetivamente. Partículas resultantes de uma combustão mais completa (valores elevados de CO2 e baixos de CO) foram caraterizadas por um elevado teor de constituintes inorgânicos e um menor conteúdo de matéria orgânica. Observou-se que a matéria orgânica particulada é composta principalmente por componentes fenólicos e produtos derivados, séries de compostos homólogos (alcanos, alcenos, ácidos alcanóicos e alcanóis), açúcares, biomarcadores esteróides e terpenóides, e hidrocarbonetos aromáticos policíclicos. O reteno, um biomarcador das emissões da queima de coníferas, foi o hidrocarboneto aromático dominante nas amostras das plumas de fumo amostradas durante a campanha que decorreu em 2009, devido ao predomínio de amostras colhidas em incêndios em florestas de pinheiros. O principal açúcar anidro, e sempre um dos compostos mais abundantes, foi o levoglucosano. O rácio levoglucosano/OC obtido nas partículas das plumas de fumo, em média, registaram valores desde 5.8 a 23 mg g-1 OC. Os rácios levoglucosano/manosano e levoglucosano/(manosano+galactosano) revelaram o predomínio de amostras provenientes da queima de coníferas. Tendo em conta que a estimativa das emissões dos incêndios florestais requer um conhecimento de fatores de emissão apropriados para cada biocombustível, a base de dados abrangente obtida neste estudo é potencialmente útil para atualizar os inventários de emissões. Tem vindo a ser observado que a fase de combustão latente sem chama, a qual pode ocorrer simultaneamente com a fase de chama e durar várias horas ou dias, pode contribuir para uma quantidade considerável de poluentes atmosféricos, pelo que os fatores de emissão correspondentes devem ser considerados no cálculo das emissões globais de incêndios florestais. Devido à falta de informação detalhada sobre perfis químicos de emissão, a base de dados obtida neste estudo pode também ser útil para a aplicação de modelos no recetor no sul da Europa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitis vinifera L., the most widely cultivated fruit crop in the world, was the starting point for the development of this PhD thesis. This subject was exploited following on two actual trends: i) the development of rapid, simple, and high sensitive methodologies with minimal sample handling; and ii) the valuation of natural products as a source of compounds with potential health benefits. The target group of compounds under study were the volatile terpenoids (mono and sesquiterpenoids) and C13 norisoprenoids, since they may present biological impact, either from the sensorial point of view, as regards to the wine aroma, or by the beneficial properties for the human health. Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, a rapid method, was based on the headspace solid-phase microextraction combined with gas chromatography-quadrupole mass spectrometry operating at selected ion monitoring mode (HS-SPME/GC-qMS-SIM), using GC conditions that allowed obtaining a C13 norisoprenoid volatile signature. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. The second methodology, used as reference method, was based on the HS-SPME/GC-qMS-SIM, allowing the GC conditions for an adequate chromatographic resolution of wine components. For quantification purposes, external calibration curves were constructed with β-ionone, with regression coefficient (r2) of 0.9968 (RSD 12.51 %) and 0.9940 (RSD of 1.08 %) for the rapid method and for the reference method, respectively. Low detection limits (1.57 and 1.10 μg L-1) were observed. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158-1529 L-1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42-39.45 μg L-1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). A rapid methodology for the establishment of the varietal volatile profile of Vitis vinifera L. cv. 'Fernão-Pires' (FP) white wines by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GCxGC-TOFMS) was developed. Monovarietal wines from different harvests, Appellations, and producers were analysed. The study was focused on the volatiles that seem to be significant to the varietal character, such as mono and sesquiterpenic compounds, and C13 norisoprenoids. Two-dimensional chromatographic spaces containing the varietal compounds using the m/z fragments 93, 121, 161, 175 and 204 were established as follows: 1tR = 255-575 s, 2tR = 0,424-1,840 s, for monoterpenoids, 1tR = 555-685 s, 2tR = 0,528-0,856 s, for C13 norisoprenoids, and 1tR = 695-950 s, 2tR = 0,520-0,960 s, for sesquiterpenic compounds. For the three chemical groups under study, from a total of 170 compounds, 45 were determined in all wines, allowing defining the "varietal volatile profile" of FP wine. Among these compounds, 15 were detected for the first time in FP wines. This study proposes a HS-SPME/GCxGC-TOFMS based methodology combined with classification-reference sample to be used for rapid assessment of varietal volatile profile of wines. This approach is very useful to eliminate the majority of the non-terpenic and non-C13 norisoprenic compounds, allowing the definition of a two-dimensional chromatographic space containing these compounds, simplifying the data compared to the original data, and reducing the time of analysis. The presence of sesquiterpenic compounds in Vitis vinifera L. related products, to which are assigned several biological properties, prompted us to investigate the antioxidant, antiproliferative and hepatoprotective activities of some sesquiterpenic compounds. Firstly, the antiradical capacity of trans,trans-farnesol, cis-nerolidol, α-humulene and guaiazulene was evaluated using chemical (DPPH• and hydroxyl radicals) and biological (Caco-2 cells) models. Guaiazulene (IC50= 0.73 mM) was the sesquiterpene with higher scavenger capacity against DPPH•, while trans,trans-farnesol (IC50= 1.81 mM) and cis-nerolidol (IC50= 1.48 mM) were more active towards hydroxyl radicals. All compounds, with the exception of α-humulene, at non-cytotoxic levels (≤ 1 mM), were able to protect Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide. The activity of the compounds under study was also evaluated as antiproliferative agents. Guaiazulene and cis-nerolidol were able to more effectively arrest the cell cycle in the S-phase than trans,trans-farnesol and α-humulene, being the last almost inactive. The relative hepatoprotection effect of fifteen sesquiterpenic compounds, presenting different chemical structures and commonly found in plants and plant-derived foods and beverages, was assessed. Endogenous lipid peroxidation and induced lipid peroxidation with tert-butyl hydroperoxide were evaluated in liver homogenates from Wistar rats. With the exception of α-humulene, all the sesquiterpenic compounds under study (1 mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The developed 3D-QSAR models, relating the hepatoprotection activity with molecular properties, showed good fit (R2LOO > 0.819) with good prediction power (Q2 > 0.950 and SDEP < 2%) for both models. A network of effects associated with structural and chemical features of sesquiterpenic compounds such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds. In conclusion, this study allowed the development of rapid and in-depth methods for the assessment of varietal volatile compounds that might have a positive impact on sensorial and health attributes related to Vitis vinifera L. These approaches can be extended to the analysis of other related food matrices, including grapes and musts, among others. In addition, the results of in vitro assays open a perspective for the promising use of the sesquiterpenic compounds, with similar chemical structures such as those studied in the present work, as antioxidants, hepatoprotective and antiproliferative agents, which meets the current challenges related to diseases of modern civilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sea salt is a natural product obtained from the evaporation of seawater in saltpans due to the combined effect of wind and sunlight. Nowadays, there is a growing interest for protection and re-valorisation of saltpans intrinsically associated to the quality of sea salt that can be evaluated by its physico-chemical properties. These man-made systems can be located in different geographical areas presenting different environmental surroundings. During the crystallization process, organic compounds coming from these surroundings can be incorporated into sea salt crystals, influencing their final composition. The organic matter associated to sea salt arises from three main sources: algae, surrounding bacterial community, and anthropogenic activity. Based on the hypothesis that sea salt contains associated organic compounds that can be used as markers of the product, including saltpans surrounding environment, the aim of this PhD thesis was to identify these compounds. With this purpose, this work comprised: 1) a deep characterisation of the volatile composition of sea salt by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME/GCGC–ToFMS) methodology, in search of potential sea salt volatile markers; 2) the development of a methodology to isolate the polymeric material potentially present in sea salt, in amounts that allow its characterisation in terms of polysaccharides and protein; and 3) to explore the possible presence of triacylglycerides. The high chromatographic resolution and sensitivity of GC×GC–ToFMS enabled the separation and identification of a higher number of volatile compounds from sea salt, about three folds, compared to unidimentional chromatography (GC–qMS). The chromatographic contour plots obtained revealed the complexity of marine salt volatile composition and confirmed the relevance of GC×GC–ToFMS for this type of analysis. The structured bidimentional chromatographic profile arising from 1D volatility and 2D polarity was demonstrated, allowing more reliable identifications. Results obtained for analysis of salt from two locations in Aveiro and harvested over three years suggest the loss of volatile compounds along the time of storage of the salt. From Atlantic Ocean salts of seven different geographical origins, all produced in 2007, it was possible to identify a sub-set of ten compounds present in all salts, namely 6-methyl-5-hepten-2-one, 2,2,6-trimethylcyclohexanone, isophorone, ketoisophorone, β-ionone-5,6-epoxide, dihydroactinidiolide, 6,10,14-trimethyl-2-pentadecanone, 3-hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate, 2,4,4-trimethylpentane-1,3-diyl bis(2-methylpropanoate), and 2-ethyl-1-hexanol. These ten compounds were considered potential volatile markers of sea salt. Seven of these compounds are carotenoid-derived compounds, and the other three may result from the integration of compounds from anthropogenic activity as metabolites of marine organisms. The present PhD work also allowed the isolation and characterisation, for the first time, of polymeric material from sea salt, using 16 Atlantic Ocean salts. A dialysis-based methodology was developed to isolate the polymeric material from sea salt in amounts that allowed its characterisation. The median content of polymeric material isolated from the 16 salts was 144 mg per kg of salt, e.g. 0.014% (w/w). Mid-infrared spectroscopy and thermogravimetry revealed the main occurrence of sulfated polysaccharides, as well as the presence of protein in the polymeric material from sea salt. Sea salt polysaccharides were found to be rich in uronic acid residues (21 mol%), glucose (18), galactose (16), and fucose (13). Sulfate content represented a median of 45 mol%, being the median content of sulfated polysaccharides 461 mg/g of polymeric material, which accounted for 66 mg/kg of dry salt. Glycosidic linkage composition indicates that the main sugar residues that could carry one or more sulfate groups were identified as fucose and galactose. This fact allowed to infer that the polysaccharides from sea salt arise mainly from algae, due to their abundance and composition. The amino acid profile of the polymeric material from the 16 Atlantic Ocean salts showed as main residues, as medians, alanine (25 mol%), leucine (14), and valine (14), which are hydrophobic, being the median protein content 35 mg/g, i.e. 4,9 mg per kg of dry salt. Beside the occurrence of hydrophobic volatile compounds in sea salt, hydrophobic non-volatile compounds were also detected. Triacylglycerides were obtained from sea salt by soxhlet extraction with n-hexane. Fatty acid composition revealed palmitic acid as the major residue (43 mol%), followed by stearic (13), linolenic (13), oleic (12), and linoleic (9). Sea salt triacylglycerides median content was 1.5 mg per kg of dry salt. Both protein and triacylglycerides seem to arise from macro and microalgae, phytoplankton and cyanobacteria, due to their abundance and composition. Despite the variability resulting from saltpans surrounding environment, this PhD thesis allowed the identification of a sea salt characteristic organic compounds profile based on volatile compounds, polysaccharides, protein, and triacylglycerides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicobacter pylori is a bacterial pathogen that affects more than half of the world’s population with gastro-intestinal diseases and is associated with gastric cancer. The cell surface of H. pylori is decorated with lipopolysaccharides (LPSs) composed of three distinct regions: a variable polysaccharide moiety (O-chain), a structurally conserved core oligosaccharide, and a lipid A region that anchors the LPS to the cell membrane. The O-chain of H. pylori LPS, exhibits unique oligosaccharide structures, such as Lewis (Le) antigens, similar to those present in the gastric mucosa and are involved in interactions with the host. Glucan, heptoglycan, and riban domains are present in the outer core region of some H. pylori LPSs. Amylose-like glycans and mannans are also constituents of some H. pylori strains, possibly co-expressed with LPSs. The complexity of H. pylori LPSs has hampered the establishment of accurate structure-function relationships in interactions with the host, and the design of carbohydrate-based therapeutics, such as vaccines. Carbohydrate microarrays are recent powerful and sensitive tools for studying carbohydrate antigens and, since their emergence, are providing insights into the function of carbohydrates and their involvement in pathogen-host interactions. The major goals of this thesis were the structural analysis of LPSs from H. pylori strains isolated from gastric biopsies of symptomatic Portuguese patients and the construction of a novel pathogen carbohydrate microarray of these LPSs (H. pylori LPS microarray) for interaction studies with proteins. LPSs were extracted from the cell surface of five H. pylori clinical isolates and one NCTC strain (26695) by phenol/water method, fractionated by size exclusion chromatography and analysed by gas chromatography coupled to mass spectrometry. The oligosaccharides released after mild acid treatment of the LPS were analysed by electrospray mass spectrometry. In addition to the conserved core oligosaccharide moieties, structural analyses revealed the presence of type-2 Lex and Ley antigens and N-acetyllactosamine (LacNAc) sequences, typically found in H. pylori strains. Also, the presence of O-6 linked glucose residues, particularly in LPSs from strains 2191 and NCTC 26695, pointed out to the expression of a 6-glucan. Other structural domains, namely ribans, composed of O-2 linked ribofuranose residues were observed in the LPS of most of H. pylori clinical isolates. For the LPS from strain 14382, large amounts of O-3 linked galactose units, pointing to the occurrence of a galactan, a domain recently identified in the LPS of another H. pylori strain. A particular feature to the LPSs from strains 2191 and CI-117 was the detection of large amounts of O-4 linked N-acetylglucosamine (GlcNAc) residues, suggesting the presence of chitin-like glycans, which to our knowledge have not been described for H. pylori strains. For the construction of the H. pylori LPS microarray, the structurally analysed LPSs, as well as LPS-derived oligosaccharide fractions, prepared as neoglycolipid (NGL) probes were noncovalently immobilized onto nitrocellulosecoated glass slides. These were printed together with NGLs of selected sequence defined oligosaccharides, bacterial LPSs and polysaccharides. The H. pylori LPS microarray was probed for recognition with carbohydratebinding proteins (CBPs) of known specificity. These included Le and blood group-related monoclonal antibodies (mAbs), plant lectins, a carbohydratebinding module (CBM) and the mammalian immune receptors DC-SIGN and Dectin-1. The analysis of these CBPs provided new information that complemented the structural analyses and was valuable in the quality control of the constructed microarray. Microarray analysis revealed the occurrence of type-2 Lex and Ley, but not type-1 Lea or Leb antigens, supporting the results obtained in the structural analysis. Furthermore, the H. pylori LPSs were recognised by DC-SIGN, a mammalian lectin known to interact with this bacterium through fucosylated Le epitopes expressed in its LPSs. The -fucose-specific lectin UEA-I, showed restricted binding to probes containing type-2 blood group H sequence and to the LPSs from strains CI-117 and 14382. The presence of H-type-2, as well Htype- 1 in the LPSs from these strains, was confirmed using specific mAbs. Although H-type-1 determinant has been reported for H. pylori LPSs, this is the first report of the presence of H-type-2 determinant. Microarray analysis also revealed that plant lectins known to bind 4-linked GlcNAc chitin oligosaccharide sequences bound H. pylori LPSs. STL, which exhibited restricted and strong binding to 4GlcNAc tri- and pentasaccharides, differentially recognised the LPS from the strain CI-117. The chitin sequences recognised in the LPS could be internal, as no binding was detected to this LPS with WGA, known to be specific for nonreducing terminal of 4GlcNAc sequence. Analyses of the H. pylori LPSs by SDS-PAGE and Western blot with STL provided further evidence for the presence of these novel domains in the O-chain region of this LPS. H. pylori LPS microarray was also applied to analysis of two human sera. The first was from a case infected with H. pylori (H. pylori+ CI-5) and the second was from a non-infected control.The analysis revealed a higher IgG-reactivity towards H. pylori LPSs in the H. pylori+ serum, than the control serum. A specific IgG response was observed to the LPS isolated from the CI-5 strain, which caused the infection. The present thesis has contributed to extension of current knowledge on chemical structures of LPS from H. pylori clinical isolates. Furthermore, the H. pylori LPS microarray constructed enabled the study of interactions with host proteins and showed promise as a tool in serological studies of H. pyloriinfected individuals. Thus, it is anticipated that the use of these complementary approaches may contribute to a better understanding of the molecular complexity of the LPSs and their role in pathogenesis.