5 resultados para poisson zèbre
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In this thesis, we study the existence and multiplicity of solutions of the following class of Schr odinger-Poisson systems: u + u + l(x) u = (x; u) in R3; = l(x)u2 in R3; where l 2 L2(R3) or l 2 L1(R3). And we consider that the nonlinearity satis es the following three kinds of cases: (i) a subcritical exponent with (x; u) = k(x)jujp 2u + h(x)u (4 p < 2 ) under an inde nite case; (ii) a general inde nite nonlinearity with (x; u) = k(x)g(u) + h(x)u; (iii) a critical growth exponent with (x; u) = k(x)juj2 2u + h(x)jujq 2u (2 q < 2 ). It is worth mentioning that the thesis contains three main innovations except overcoming several di culties, which are generated by the systems themselves. First, as an unknown referee said in his report, we are the rst authors concerning the existence of multiple positive solutions for Schr odinger- Poisson systems with an inde nite nonlinearity. Second, we nd an interesting phenomenon in Chapter 2 and Chapter 3 that we do not need the condition R R3 k(x)ep 1dx < 0 with an inde nite noncoercive case, where e1 is the rst eigenfunction of +id in H1(R3) with weight function h. A similar condition has been shown to be a su cient and necessary condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity for a bounded domain (see e.g. Alama-Tarantello, Calc. Var. PDE 1 (1993), 439{475), or to be a su cient condition to the existence of positive solutions for semilinear elliptic equations with inde nite nonlinearity in RN (see e.g. Costa-Tehrani, Calc. Var. PDE 13 (2001), 159{189). Moreover, the process used in this case can be applied to study other aspects of the Schr odinger-Poisson systems and it gives a way to study the Kirchho system and quasilinear Schr odinger system. Finally, to get sign changing solutions in Chapter 5, we follow the spirit of Hirano-Shioji, Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 333, but the procedure is simpler than that they have proposed in their paper.
Resumo:
A aplicação de simulações de mecânica e dinâmica molecular ao estudo de sistemas supramoleculares tem adquirido, ao longo dos últimos anos, enorme relevância. A sua utilização não só tem levado a uma melhor compreensão dos mecanismos de formação desses mesmos sistemas, como também tem fornecido um meio para o desenvolvimento de novas arquitecturas supramoleculares. Nesta tese são descritos os trabalhos de mecânica e dinâmica molecular desenvolvidos no âmbito do estudo de associações supramoleculares entre aniões e receptores sintéticos do tipo [2]catenano, [2]rotaxano e pseudorotaxano. São ainda estudados complexos supramoleculares envolvendo receptores heteroditópicos do tipo calix[4]diquinona e pares iónicos formados por aniões halogeneto e catiões alcalinos e amónio. Os estudos aqui apresentados assentam essencialmente em duas vertentes: no estudo das propriedades dinâmicas em solução dos vários complexos supramoleculares considerados e no cálculo das energias livres de Gibbs de associação relativas dos vários iões aos receptores sintéticos. As metodologias utilizadas passaram por dinâmica molecular convencional e REMD (Replica Exchange Molecular Dynamics), para o estudo das propriedades em solução, e por cálculos de integração termodinâmica e MMPBSA (Molecular Mechanics – Poisson Boltzmann Surface Area), para a computação das energias livres de associação relativas. Os resultados obtidos, além de terem permitido uma visão mais detalhada dos mecanismos envolvidos no reconhecimento e associação dos vários receptores aos aniões e pares iónicos abordados, encontram-se, globalmente, de acordo com os análogos determinados experimentalmente, validando assim as metodologias empregadas. Em jeito de conclusão, investigou-se ainda a capacidade de um dos receptores heteroditópicos estudados para assistir favoravelmente na migração do par iónico KCl através da interface água-clorofórmio. Para tal, foram utilizadas simulações SMD (Steered Molecular Dynamics) para a computação do perfil de energia livre de Gibbs associada à migração do par iónico através da interface.
Resumo:
A análise das séries temporais de valores inteiros tornou-se, nos últimos anos, uma área de investigação importante, não só devido à sua aplicação a dados de contagem provenientes de diversos campos da ciência, mas também pelo facto de ser uma área pouco explorada, em contraste com a análise séries temporais de valores contínuos. Uma classe que tem obtido especial relevo é a dos modelos baseados no operador binomial thinning, da qual se destaca o modelo auto-regressivo de valores inteiros de ordem p. Esta classe é muito vasta, pelo que este trabalho tem como objectivo dar um contributo para a análise estatística de processos de contagem que lhe pertencem. Esta análise é realizada do ponto de vista da predição de acontecimentos, aos quais estão associados mecanismos de alarme, e também da introdução de novos modelos que se baseiam no referido operador. Em muitos fenómenos descritos por processos estocásticos a implementação de um sistema de alarmes pode ser fundamental para prever a ocorrência de um acontecimento futuro. Neste trabalho abordam-se, nas perspectivas clássica e bayesiana, os sistemas de alarme óptimos para processos de contagem, cujos parâmetros dependem de covariáveis de interesse e que variam no tempo, mais concretamente para o modelo auto-regressivo de valores inteiros não negativos com coeficientes estocásticos, DSINAR(1). A introdução de novos modelos que pertencem à classe dos modelos baseados no operador binomial thinning é feita quando se propõem os modelos PINAR(1)T e o modelo SETINAR(2;1). O modelo PINAR(1)T tem estrutura periódica, cujas inovações são uma sucessão periódica de variáveis aleatórias independentes com distribuição de Poisson, o qual foi estudado com detalhe ao nível das suas propriedades probabilísticas, métodos de estimação e previsão. O modelo SETINAR(2;1) é um processo auto-regressivo de valores inteiros, definido por limiares auto-induzidos e cujas inovações formam uma sucessão de variáveis independentes e identicamente distribuídas com distribuição de Poisson. Para este modelo estudam-se as suas propriedades probabilísticas e métodos para estimar os seus parâmetros. Para cada modelo introduzido, foram realizados estudos de simulação para comparar os métodos de estimação que foram usados.
Resumo:
A modelação e análise de séries temporais de valores inteiros têm sido alvo de grande investigação e desenvolvimento nos últimos anos, com aplicações várias em diversas áreas da ciência. Nesta tese a atenção centrar-se-á no estudo na classe de modelos basedos no operador thinning binomial. Tendo como base o operador thinning binomial, esta tese focou-se na construção e estudo de modelos SETINAR(2; p(1); p(2)) e PSETINAR(2; 1; 1)T , modelos autorregressivos de valores inteiros com limiares autoinduzidos e dois regimes, admitindo que as inovações formam uma sucessão de variáveis independentes com distribuição de Poisson. Relativamente ao primeiro modelo analisado, o modelo SETINAR(2; p(1); p(2)), além do estudo das suas propriedades probabilísticas e de métodos, clássicos e bayesianos, para estimar os parâmetros, analisou-se a questão da seleção das ordens, no caso de elas serem desconhecidas. Com este objetivo consideraram-se algoritmos de Monte Carlo via cadeias de Markov, em particular o algoritmo Reversible Jump, abordando-se também o problema da seleção de modelos, usando metodologias clássica e bayesiana. Complementou-se a análise através de um estudo de simulação e uma aplicação a dois conjuntos de dados reais. O modelo PSETINAR(2; 1; 1)T proposto, é também um modelo autorregressivo com limiares autoinduzidos e dois regimes, de ordem unitária em cada um deles, mas apresentando uma estrutura periódica. Estudaram-se as suas propriedades probabilísticas, analisaram-se os problemas de inferência e predição de futuras observações e realizaram-se estudos de simulação.
Resumo:
The Asymmetric Power Arch representation for the volatility was introduced by Ding et al.(1993) in order to account for asymmetric responses in the volatility in the analysis of continuous-valued financial time series like, for instance, the log-return series of foreign exchange rates, stock indices or share prices. As reported by Brannas and Quoreshi (2010), asymmetric responses in volatility are also observed in time series of counts such as the number of intra-day transactions in stocks. In this work, an asymmetric power autoregressive conditional Poisson model is introduced for the analysis of time series of counts exhibiting asymmetric overdispersion. Basic probabilistic and statistical properties are summarized and parameter estimation is discussed. A simulation study is presented to illustrate the proposed model. Finally, an empirical application to a set of data concerning the daily number of stock transactions is also presented to attest for its practical applicability in data analysis.