2 resultados para open (incomplete) orbit

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exponential growth of the world population has led to an increase of settlements often located in areas prone to natural disasters, including earthquakes. Consequently, despite the important advances in the field of natural catastrophes modelling and risk mitigation actions, the overall human losses have continued to increase and unprecedented economic losses have been registered. In the research work presented herein, various areas of earthquake engineering and seismology are thoroughly investigated, and a case study application for mainland Portugal is performed. Seismic risk assessment is a critical link in the reduction of casualties and damages due to earthquakes. Recognition of this relation has led to a rapid rise in demand for accurate, reliable and flexible numerical tools and software. In the present work, an open-source platform for seismic hazard and risk assessment is developed. This software is capable of computing the distribution of losses or damage for an earthquake scenario (deterministic event-based) or earthquake losses due to all the possible seismic events that might occur within a region for a given interval of time (probabilistic event-based). This effort has been developed following an open and transparent philosophy and therefore, it is available to any individual or institution. The estimation of the seismic risk depends mainly on three components: seismic hazard, exposure and vulnerability. The latter component assumes special importance, as by intervening with appropriate retrofitting solutions, it may be possible to decrease directly the seismic risk. The employment of analytical methodologies is fundamental in the assessment of structural vulnerability, particularly in regions where post-earthquake building damage might not be available. Several common methodologies are investigated, and conclusions are yielded regarding the method that can provide an optimal balance between accuracy and computational effort. In addition, a simplified approach based on the displacement-based earthquake loss assessment (DBELA) is proposed, which allows for the rapid estimation of fragility curves, considering a wide spectrum of uncertainties. A novel vulnerability model for the reinforced concrete building stock in Portugal is proposed in this work, using statistical information collected from hundreds of real buildings. An analytical approach based on nonlinear time history analysis is adopted and the impact of a set of key parameters investigated, including the damage state criteria and the chosen intensity measure type. A comprehensive review of previous studies that contributed to the understanding of the seismic hazard and risk for Portugal is presented. An existing seismic source model was employed with recently proposed attenuation models to calculate probabilistic seismic hazard throughout the territory. The latter results are combined with information from the 2011 Building Census and the aforementioned vulnerability model to estimate economic loss maps for a return period of 475 years. These losses are disaggregated across the different building typologies and conclusions are yielded regarding the type of construction more vulnerable to seismic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless communication technologies have become widely adopted, appearing in heterogeneous applications ranging from tracking victims, responders and equipments in disaster scenarios to machine health monitoring in networked manufacturing systems. Very often, applications demand a strictly bounded timing response, which, in distributed systems, is generally highly dependent on the performance of the underlying communication technology. These systems are said to have real-time timeliness requirements since data communication must be conducted within predefined temporal bounds, whose unfulfillment may compromise the correct behavior of the system and cause economic losses or endanger human lives. The potential adoption of wireless technologies for an increasingly broad range of application scenarios has made the operational requirements more complex and heterogeneous than before for wired technologies. On par with this trend, there is an increasing demand for the provision of cost-effective distributed systems with improved deployment, maintenance and adaptation features. These systems tend to require operational flexibility, which can only be ensured if the underlying communication technology provides both time and event triggered data transmission services while supporting on-line, on-the-fly parameter modification. Generally, wireless enabled applications have deployment requirements that can only be addressed through the use of batteries and/or energy harvesting mechanisms for power supply. These applications usually have stringent autonomy requirements and demand a small form factor, which hinders the use of large batteries. As the communication support may represent a significant part of the energy requirements of a station, the use of power-hungry technologies is not adequate. Hence, in such applications, low-range technologies have been widely adopted. In fact, although low range technologies provide smaller data rates, they spend just a fraction of the energy of their higher-power counterparts. The timeliness requirements of data communications, in general, can be met by ensuring the availability of the medium for any station initiating a transmission. In controlled (close) environments this can be guaranteed, as there is a strict regulation of which stations are installed in the area and for which purpose. Nevertheless, in open environments, this is hard to control because no a priori abstract knowledge is available of which stations and technologies may contend for the medium at any given instant. Hence, the support of wireless real-time communications in unmanaged scenarios is a highly challenging task. Wireless low-power technologies have been the focus of a large research effort, for example, in the Wireless Sensor Network domain. Although bringing extended autonomy to battery powered stations, such technologies are known to be negatively influenced by similar technologies contending for the medium and, especially, by technologies using higher power transmissions over the same frequency bands. A frequency band that is becoming increasingly crowded with competing technologies is the 2.4 GHz Industrial, Scientific and Medical band, encompassing, for example, Bluetooth and ZigBee, two lowpower communication standards which are the base of several real-time protocols. Although these technologies employ mechanisms to improve their coexistence, they are still vulnerable to transmissions from uncoordinated stations with similar technologies or to higher power technologies such as Wi- Fi, which hinders the support of wireless dependable real-time communications in open environments. The Wireless Flexible Time-Triggered Protocol (WFTT) is a master/multi-slave protocol that builds on the flexibility and timeliness provided by the FTT paradigm and on the deterministic medium capture and maintenance provided by the bandjacking technique. This dissertation presents the WFTT protocol and argues that it allows supporting wireless real-time communication services with high dependability requirements in open environments where multiple contention-based technologies may dispute the medium access. Besides, it claims that it is feasible to provide flexible and timely wireless communications at the same time in open environments. The WFTT protocol was inspired on the FTT paradigm, from which higher layer services such as, for example, admission control has been ported. After realizing that bandjacking was an effective technique to ensure the medium access and maintenance in open environments crowded with contention-based communication technologies, it was recognized that the mechanism could be used to devise a wireless medium access protocol that could bring the features offered by the FTT paradigm to the wireless domain. The performance of the WFTT protocol is reported in this dissertation with a description of the implemented devices, the test-bed and a discussion of the obtained results.