6 resultados para modified simulated body fluid (m-SBF)

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A paradigm shift is taking place from using transplanting tissue and synthetic implants to a tissue engineering approach that aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates, guiding the growth of new tissue. The central focus of this thesis was to produce porous glass and glass-ceramic scaffolds that exhibits a bioactive and biocompatible behaviour with specific surface reactivity in synthetic physiological fluids and cell-scaffold interactions, enhanced by composition and thermal treatments applied. Understanding the sintering behaviour and the interaction between the densification and crystallization processes of glass powders was essential for assessing the ideal sintering conditions for obtaining a glass scaffolds for tissue engineering applications. Our main goal was to carry out a comprehensive study of the bioactive glass sintering, identifying the powder size and sintering variables effect, for future design of sintered glass scaffolds with competent microstructures. The developed scaffolds prepared by the salt sintering method using a 3CaO.P2O5 - SiO2 - MgO glass system, with additions of Na2O with a salt, NaCl, exhibit high porosity, interconnectivity, pore size distribution and mechanical strength suitable for bone repair applications. The replacement of 6 % MgO by Na2O in the glass network allowed to tailor the dissolution rate and bioactivity of the glass scaffolds. Regarding the biological assessment, the incorporation of sodium to the composition resulted in an inibition cell response for small periods. Nevertheless it was demonstrated that for 21 days the cells response recovered and are similar for both glass compositions. The in vitro behaviour of the glass scaffolds was tested by introducing scaffolds to simulated body fluid for 21 days. Energy-dispersive Xray spectroscopy and SEM analyses proved the existence of CaP crystals for both compositions. Crystallization forming whitlockite was observed to affect the dissolution behaviour in simulated body fluid. By performing different heat treatments, it was possible to control the bioactivity and biocompatability of the glass scaffolds by means of a controlled crystallization. To recover and tune the bioactivity of the glass-ceramic with 82 % crystalline phase, different methods have been applied including functionalization using 3- aminopropyl-triethoxysilane (APTES). The glass ceramic modified surface exhibited an accelerated crystalline hydroxyapatite layer formation upon immersion in SBF after 21 days while the as prepared glass-ceramic had no detected formation of calcium phosphate up to 5 months. A sufficient mechanical support for bone tissue regeneration that biodegrade later at a tailorable rate was achievable with the glass–ceramic scaffold. Considering the biological assessment, scaffolds demonstrated an inductive effect on the proliferation of cells. The cells showed a normal morphology and high growth rate when compared to standard culture plates. This study opens up new possibilities for using 3CaO.P2O5–SiO2–MgO glass to manufacture various structures, while tailoring their bioactivity by controlling the content of the crystalline phase. Additionally, the in vitro behaviour of these structures suggests the high potential of these materials to be used in the field of tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Desde há muitas décadas que é sabido que os organismos vivos, em especial os tecidos, reagem fisicamente a estímulos eléctricos, podendo esses efeitos reproduzirem-se numa libertação de químicos endógenos, ou deformar a sua estrutura física. O tecido ósseo por si só é considerado um material/tecido piezoeléctrico, deformando-se mecanicamente quando lhe é induzido um estímulo eléctrico e vice-versa, ou seja, produz um potencial eléctrico quando sofre uma tracção ou compressão mecânica. A hipótese de que um material ferroeléctrico possa vir a produzir efeitos no desempenho deste tipo de tecidos é então proposta, como por exemplo, para uma melhor, mais rápida e eficaz regeneração óssea. Estes mesmos materiais ferroeléctricos podem porventura alterar as cargas de superfície dos tecidos vivos de modo a atrair, atrasar ou até impedir o fluxo iónico de elementos químicos específicos responsáveis pelo processo de regeneração. São escolhidos então o niobato de lítio e o tantalato de lítio como cerâmicos ferroeléctricos e foi estudada pela primeira vez a sua bioactividade in vitro, esperando-se encontrar pistas relativas à sua bioactividade in vivo. Estes cerâmicos ferroeléctricos foram seleccionados devido às suas importantes propriedades piezoeléctricas e ferroeléctricas. Estas propriedades podem abrir um novo e importante leque de aplicações biomédicas caso estes cerâmicos sejam bioactivos. Este trabalho foi dividido em 3 fases: (i) sintetização dos pós de niobato de lítio e tantalato de lítio, (ii) caracterização dos pós e (iii) preparação das amostras e (iv) estudo da bioactividade destes cerâmicos ferroeléctricos. Os pós foram produzidos através de um processo simples de mistura/moagem seguido de calcinação. Foram estudadas as fases cristalinas presentes através de Difracção de raios-X (DRX) e avaliadas as características morfológicas destes pós, nomeadamente o diâmetro de partículas e área superficial específica. De modo a simular o ambiente do plasma humano, foi produzido sinteticamente um “Simulated Body Fluid” (SBF). Seguidamente as amostras foram imersas nesse ambiente líquido por 1, 3, 7, 15 e 21 dias. Após remoção dos pós foram realizadas uma série de análises de modo a estudar a sua bioactividade. De entre estes testes destacam-se a microscopia electrónica de varrimento (SEM/EDS), DRX e espectroscopia de Infravermelho por transformada de Fourier com reflectância total atenuada (FTIR-ATR). Embora não tenham sido detectadas alterações no DRX realizado aos pós, verificou-se a formação de aglomerados de fosfato de cálcio na superfície dos pós através do SEM, resultados estes, reforçados pelo EDS e FTIR-ATR. Estes precipitados de fosfato de cálcio indiciam a capacidade destes pós cerâmicos ferroeléctricos se comportarem como bioactivos em contacto com tecidos ósseos in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os vidros bioativos constituem um material apropriado para o preenchimento de defeitos ósseos, como alternativa a enxertos autólogos, uma vez que, quando expostos a fluidos fisiológicos promovem a formação de uma ligação com o tecido ósseo sob a forma de uma camada de hidroxiapatite carbonatada. No presente trabalho caracterizaram-se vidros bioativos sem conteúdo alcalino, cuja composição incide no sistema binário de diópsido (CaMgSi2O6) e fosfato de tricálcio (3CaO·P2O5), em função da sua molhabilidade, carga superficial, perfil de degradação, carácter bioativo em fluido fisiológico simulado e do seu comportamento in vitro em contacto com células estaminais mesenquimais humanas (hMSCs). A medição do ângulo de contacto inicial de água sobre os vidros demonstrou o carácter hidrofílico dos vidros investigados. A determinação do potencial zeta mostrou que a carga superficial dos vidros é negativa, sendo mais negativa na composição Di-70. O estudo da biodegradação dos vidros, efetuado através da sua imersão em Tris-HCl, permitiu concluir que a perda de peso dos vidros foi reduzida. A caraterização in vitro em meio acelular foi efetuada através da imersão dos vidros numa solução de fluido fisiológico simulado (SBF) e verificou-se que estes possuem capacidade de formar uma camada de hidroxiapatite carbonatada à sua superfície após 7 dias, detetável por XRD, FTIR e SEM/EDS, sugerindo que este conjunto de vidros é potencialmente bioativo, e poderá estimular a proliferação e diferenciação celular. A resposta das hMSCs em cultura aos vidros bioativos foi avaliada em termos de atividade metabólica, morfologia, viabilidade, proliferação e diferenciação osteogénica e conclui-se que os biovidros Di-60 e Di-70 poderão constituir um suporte viável para a proliferação e diferenciação de hMSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) – Fluorapatite (Ca5(PO4)3F) – Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1–12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass®. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass–ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O conceito de bioatividade surgiu com a descoberta, no início década de 70, de que algumas composições vítreas (ex.: 45S5 Bioglass®), tinham a capacidade de estabelecer uma ligação direta e estável com os tecidos vivos. Desde então, este grupo de biomateriais tem vindo a receber uma atenção cada vez maior por parte dos investigadores, tendo como motivação principal a busca de novas composições com propriedades mais adequadas para a regeneração óssea do que as composições comercialmente disponíveis. Na presente tese, avaliou-se o desempenho in vivo de duas composições de biovidro do sistema diopsite (CaMgSi2O6) - fluorapatite (Ca5(PO4)3F) - fosfato tricálcico (3CaO•P2O5) aplicados em defeitos ósseos de tamanho não crítico em carneiros, tendo também sido avaliada a biocompatibilidade dos biomateriais através da aplicação subcutânea de placas dos mesmos vidros. O trabalho realizado também incluiu a avaliação dos materiais in vitro, através de estudos de biomineralização em fluido corporal simulado e estudos de degradação. Os biomateriais foram comparados com o biovidro 45S5 Bioglass®, sendo que em termos de bioatividade in vitro, as duas composições investigadas apresentaram um maior potencial bioativo, levando à formação de uma camada superficial de hidroxiapatite carbonatada, em contraste com a formação de calcite na composição comercial, sob condições idênticas. Os testes de degradação in vitro também apresentaram resultados melhores para as duas novas composições, traduzidos por variações de pH e taxas de degradação menores do que os observados no caso do 45S5 Bioglass®. A avaliação in vivo dos implantes subcutâneos permitiu apurar a biocompatibilidade dos biovidros testados, tendo sido considerados ligeiramente irritantes. Os resultados relativos à aplicação dos pós de vidro bioativo nos defeitos ósseos não foram obtidos em tempo útil de modo a poderem ser incluídos na presente tese. Considerando o desempenho in vitro e a biocompatibilidade dos materiais estudados, estes podem apontar-se como materiais promissores para aplicações em engenharia de tecidos, particularmente na regeneração do tecido ósseo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.