Assessment of biocompatibility of selected ferroelectric ceramics


Autoria(s): Félix, Pedro Tiago Albergaria
Contribuinte(s)

Vilarinho, Paula

Fernandes, Maria Helena Figueira Vaz

Data(s)

03/07/2013

08/02/2013

Resumo

Desde há muitas décadas que é sabido que os organismos vivos, em especial os tecidos, reagem fisicamente a estímulos eléctricos, podendo esses efeitos reproduzirem-se numa libertação de químicos endógenos, ou deformar a sua estrutura física. O tecido ósseo por si só é considerado um material/tecido piezoeléctrico, deformando-se mecanicamente quando lhe é induzido um estímulo eléctrico e vice-versa, ou seja, produz um potencial eléctrico quando sofre uma tracção ou compressão mecânica. A hipótese de que um material ferroeléctrico possa vir a produzir efeitos no desempenho deste tipo de tecidos é então proposta, como por exemplo, para uma melhor, mais rápida e eficaz regeneração óssea. Estes mesmos materiais ferroeléctricos podem porventura alterar as cargas de superfície dos tecidos vivos de modo a atrair, atrasar ou até impedir o fluxo iónico de elementos químicos específicos responsáveis pelo processo de regeneração. São escolhidos então o niobato de lítio e o tantalato de lítio como cerâmicos ferroeléctricos e foi estudada pela primeira vez a sua bioactividade in vitro, esperando-se encontrar pistas relativas à sua bioactividade in vivo. Estes cerâmicos ferroeléctricos foram seleccionados devido às suas importantes propriedades piezoeléctricas e ferroeléctricas. Estas propriedades podem abrir um novo e importante leque de aplicações biomédicas caso estes cerâmicos sejam bioactivos. Este trabalho foi dividido em 3 fases: (i) sintetização dos pós de niobato de lítio e tantalato de lítio, (ii) caracterização dos pós e (iii) preparação das amostras e (iv) estudo da bioactividade destes cerâmicos ferroeléctricos. Os pós foram produzidos através de um processo simples de mistura/moagem seguido de calcinação. Foram estudadas as fases cristalinas presentes através de Difracção de raios-X (DRX) e avaliadas as características morfológicas destes pós, nomeadamente o diâmetro de partículas e área superficial específica. De modo a simular o ambiente do plasma humano, foi produzido sinteticamente um “Simulated Body Fluid” (SBF). Seguidamente as amostras foram imersas nesse ambiente líquido por 1, 3, 7, 15 e 21 dias. Após remoção dos pós foram realizadas uma série de análises de modo a estudar a sua bioactividade. De entre estes testes destacam-se a microscopia electrónica de varrimento (SEM/EDS), DRX e espectroscopia de Infravermelho por transformada de Fourier com reflectância total atenuada (FTIR-ATR). Embora não tenham sido detectadas alterações no DRX realizado aos pós, verificou-se a formação de aglomerados de fosfato de cálcio na superfície dos pós através do SEM, resultados estes, reforçados pelo EDS e FTIR-ATR. Estes precipitados de fosfato de cálcio indiciam a capacidade destes pós cerâmicos ferroeléctricos se comportarem como bioactivos em contacto com tecidos ósseos in vivo.

For many decades it is known that living organisms, especially living tissues, physically react to electrical stimuli, and these effects may result in a release of endogenous chemicals, or deform its physical structure. The bone tissue itself is considered a piezoelectric material/tissue deforming mechanically when induced by an electrical stimulus and vice-versa, in other words, it produces an electric potential when it is submitted to a mechanical deformation. The hypothesis that a ferroelectric material is likely to have an effect on the performance of this type of tissue is then proposed for, as an example, better, faster and more effective bone regeneration. These same ferroelectric materials may possibly change the surface of living tissues to attract, delay or even prevent the flow of specific ions responsible for the tissue regeneration process. Lithium niobate and lithium tantalate were selected as ferroelectric ceramics and its bioactivity was studied in vitro and it is expected to find clues concerning its bioactivity in vivo. These ferroelectric ceramics were selected due to their important piezoelectric and ferroelectric properties. These properties may open up a new and important range of biomedical applications if they are proven to be viable bioactive ferroelectric ceramics. This work is divided into three phases: (i) synthesis of lithium niobate and lithium tantalate powders, (ii) characterization of powders and (iii) sample preparation and (iv) study of the bioactivity of these ferroelectric ceramics. The powders were produced through a simple process of mixing/milling followed by calcination. Studies regarding the crystalline phases, particle size and specific surface area were made. In order to simulate the environment of human plasma, a "Simulated Body Fluid" (SBF) was synthetically prepared. Thereafter, the samples were immersed in the liquid environment for 1, 3, 7, 15 and 21 days. After removal of the powders, a series of tests, namely SEM/EDS, XRD and FTIR-ATR were conducted to these powders in order to study its bioactivity. From these tests consisted mainly on SEM/EDS, XRD and FTIR-ATR. Although no changes were detected in the powders XRD, it was visualized by SEM the formation of agglomerates of calcium phosphate on the surface and these results were corroborated by EDS and FTIR-ATR. These precipitates of calcium phosphate suggest the ability of the ferroelectric ceramics to behave as bioactive in contact in bone tissue in vivo.

Mestrado em Materiais e Dispositivos Biomédicos

Identificador

http://hdl.handle.net/10773/10711

Idioma(s)

eng

Publicador

Universidade de Aveiro

Direitos

openAccess

Palavras-Chave #Engenharia de materiais #Regeneração óssea #Biomateriais #Materiais ferroeléctricos #Biocerâmica
Tipo

masterThesis