2 resultados para models of communication
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
This chapter presents a comprehensive view of the main activities and findings of a research project entitled TRACER-Portuguese Public Higher Education Use of Communication Technologies, which focused on how the information about the use of Communication Technologies in Higher Education Institutions can be collected, systematized, processed, and deployed to stakeholders. The project was carried out between 2011 and 2014 and its main results are a consolidated proposal of an analysis model to address the use of Communication Technologies in Higher Education institutions, as well as the U-TRACER® tool. This Web-based tool provides support to the process of collecting, processing, and deployment of data related with the use of Communication Technologies in a specific Higher Education or in a group of institutions, based on institutional or geographical criteria.
Resumo:
The recently reported Monte Carlo Random Path Sampling method (RPS) is here improved and its application is expanded to the study of the 2D and 3D Ising and discrete Heisenberg models. The methodology was implemented to allow use in both CPU-based high-performance computing infrastructures (C/MPI) and GPU-based (CUDA) parallel computation, with significant computational performance gains. Convergence is discussed, both in terms of free energy and magnetization dependence on field/temperature. From the calculated magnetization-energy joint density of states, fast calculations of field and temperature dependent thermodynamic properties are performed, including the effects of anisotropy on coercivity, and the magnetocaloric effect. The emergence of first-order magneto-volume transitions in the compressible Ising model is interpreted using the Landau theory of phase transitions. Using metallic Gadolinium as a real-world example, the possibility of using RPS as a tool for computational magnetic materials design is discussed. Experimental magnetic and structural properties of a Gadolinium single crystal are compared to RPS-based calculations using microscopic parameters obtained from Density Functional Theory.