7 resultados para forced

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic code establishes the rules that govern gene translation into proteins. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Despite this, several alterations to the standard genetic code have been discovered in both prokaryotes and eukaryotes, namely in the fungal CTG clade where a unique seryl transfer RNA (tRNACAG Ser) decodes leucine CUG codons as serine. This tRNACAG Ser appeared 272±25 million years ago through insertion of an adenosine in the middle position of the anticodon of a tRNACGA Ser gene, which changed its anticodon from 5´-CGA-3´ to 5´-CAG-3´. This most dramatic genetic event restructured the proteome of the CTG clade species, but it is not yet clear how and why such deleterious genetic event was selected and became fixed in those fungal genomes. In this study we have attempted to shed new light on the evolution of this fungal genetic code alteration by reconstructing its evolutionary pathway in vivo in the yeast Saccharomyces cerevisiae. For this, we have expressed wild type and mutant versions of the C. albicans tRNACGA Ser gene into S. cerevisiae and evaluated the impact of the mutant tRNACGA Ser on fitness, tRNA stability, translation efficiency and aminoacylation kinetics. Our data demonstrate that these mutants are expressed and misincorporate Ser at CUGs, but their expression is repressed through an unknown molecular mechanism. We further demonstrate, using in vivo forced evolution methodologies, that the tRNACAG Ser can be easily inactivated through natural mutations that prevent its recognition by the seryl-tRNA synthetase. The overall data show that repression of expression of the mistranslating tRNACAG Ser played a critical role on the evolution of CUG reassignment from Leu to Ser. In order to better understand the evolution of natural genetic code alterations, we have also engineered partial reassignment of various codons in yeast. The data confirmed that genetic code ambiguity affects fitness, induces protein aggregation, interferes with the cell cycle and results in nuclear and morphologic alterations, genome instability and gene expression deregulation. Interestingly, it also generates phenotypic variability and phenotypes that confer growth advantages in certain environmental conditions. This study provides strong evidence for direct and critical roles of the environment on the evolution of genetic code alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work reported in this thesis aimed at applying the methodology known as metabonomics to the detailed study of a particular type of beer and its quality control, with basis on the use of multivariate analysis (MVA) to extract meaningful information from given analytical data sets. In Chapter 1, a detailed description of beer is given considering the brewing process, main characteristics and typical composition of beer, beer stability and the commonly used analytical techniques for beer analysis. The fundamentals of the analytical methods employed here, namely nuclear magnetic resonance (NMR) spectroscopy, gas-chromatography-mass spectrometry (GC-MS) and mid-infrared (MIR) spectroscopy, together with the description of the metabonomics methodology are described shortly in Chapter 2. In Chapter 3, the application of high resolution NMR to characterize the chemical composition of a lager beer is described. The 1H NMR spectrum obtained by direct analysis of beer show a high degree of complexity, confirming the great potential of NMR spectroscopy for the detection of a wide variety of families of compounds, in a single run. Spectral assignment was carried out by 2D NMR, resulting in the identification of about 40 compounds, including alcohols, amino acids, organic acids, nucleosides and sugars. In a second part of Chapter 3, the compositional variability of beer was assessed. For that purpose, metabonomics was applied to 1H NMR data (NMR/MVA) to evaluate beer variability between beers from the same brand (lager), produced nationally but differing in brewing site and date of production. Differences between brewing sites and/or dates were observed, reflecting compositional differences related to particular processing steps, including mashing, fermentation and maturation. Chapter 4 describes the quantification of organic acids in beer by NMR, using different quantitative methods: direct integration of NMR signals (vs. internal reference or vs. an external electronic reference, ERETIC method) and by quantitative statistical methods (using the partial least squares (PLS) regression) were developed and compared. PLS1 regression models were built using different quantitative methods as reference: capillary electrophoresis with direct and indirect detection and enzymatic essays. It was found that NMR integration results generally agree with those obtained by the best performance PLS models, although some overestimation for malic and pyruvic acids and an apparent underestimation for citric acid were observed. Finally, Chapter 5 describes metabonomic studies performed to better understand the forced aging (18 days, at 45 ºC) beer process. The aging process of lager beer was followed by i) NMR, ii) GC-MS, and iii) MIR spectroscopy. MVA methods of each analytical data set revealed clear separation between different aging days for both NMR and GC-MS data, enabling the identification of compounds closely related with the aging process: 5-hydroxymethylfurfural (5-HMF), organic acids, γ-amino butyric acid (GABA), proline and the ratio linear/branched dextrins (NMR domain) and 5-HMF, furfural, diethyl succinate and phenylacetaldehyde (known aging markers) and, for the first time, 2,3-dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one xii (DDMP) and maltoxazine (by GC-MS domain). For MIR/MVA, no aging trend could be measured, the results reflecting the need of further experimental optimizations. Data correlation between NMR and GC-MS data was performed by outer product analysis (OPA) and statistical heterospectroscopy (SHY) methodologies, enabling the identification of further compounds (11 compounds, 5 of each are still unassigned) highly related with the aging process. Data correlation between sensory characteristics and NMR and GC-MS was also assessed through PLS1 regression models using the sensory response as reference. The results obtained showed good relationships between analytical data response and sensory response, particularly for the aromatic region of the NMR spectra and for GC-MS data (r > 0.89). However, the prediction power of all built PLS1 regression models was relatively low, possibly reflecting the low number of samples/tasters employed, an aspect to improve in future studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A integridade do sinal em sistemas digitais interligados de alta velocidade, e avaliada através da simulação de modelos físicos (de nível de transístor) é custosa de ponto vista computacional (por exemplo, em tempo de execução de CPU e armazenamento de memória), e exige a disponibilização de detalhes físicos da estrutura interna do dispositivo. Esse cenário aumenta o interesse pela alternativa de modelação comportamental que descreve as características de operação do equipamento a partir da observação dos sinais eléctrico de entrada/saída (E/S). Os interfaces de E/S em chips de memória, que mais contribuem em carga computacional, desempenham funções complexas e incluem, por isso, um elevado número de pinos. Particularmente, os buffers de saída são obrigados a distorcer os sinais devido à sua dinâmica e não linearidade. Portanto, constituem o ponto crítico nos de circuitos integrados (CI) para a garantia da transmissão confiável em comunicações digitais de alta velocidade. Neste trabalho de doutoramento, os efeitos dinâmicos não-lineares anteriormente negligenciados do buffer de saída são estudados e modulados de forma eficiente para reduzir a complexidade da modelação do tipo caixa-negra paramétrica, melhorando assim o modelo standard IBIS. Isto é conseguido seguindo a abordagem semi-física que combina as características de formulação do modelo caixa-negra, a análise dos sinais eléctricos observados na E/S e propriedades na estrutura física do buffer em condições de operação práticas. Esta abordagem leva a um processo de construção do modelo comportamental fisicamente inspirado que supera os problemas das abordagens anteriores, optimizando os recursos utilizados em diferentes etapas de geração do modelo (ou seja, caracterização, formulação, extracção e implementação) para simular o comportamento dinâmico não-linear do buffer. Em consequência, contributo mais significativo desta tese é o desenvolvimento de um novo modelo comportamental analógico de duas portas adequado à simulação em overclocking que reveste de um particular interesse nas mais recentes usos de interfaces de E/S para memória de elevadas taxas de transmissão. A eficácia e a precisão dos modelos comportamentais desenvolvidos e implementados são qualitativa e quantitativamente avaliados comparando os resultados numéricos de extracção das suas funções e de simulação transitória com o correspondente modelo de referência do estado-da-arte, IBIS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work is to carry out a comprehensive study on the Western Iberian Margin (WIM) circulation my means of numerical modeling, and to postulate what this circulation will be in the future. The adopted approach was the development of a regional ocean model configuration with high resolution, capable of reproducing the largeand small-scale dynamics of the coastal transition zone. Four numerical experiences were carried out according to these objectives: (1) a climatological run, in order to study the system’s seasonal behavior and its mean state; (2) a run forced with real winds and fluxes for period 2001-2011 in order to study the interannual variability of the system; (3) a run forced with mean fields from Global Climate Models (GCMs) for the present, in order to validate GCMs as adequate forcing for regional ocean modeling; (4) a similar run (3) for period 2071-2100, in order to assess possible consequences of a future climate scenario on the hydrography and dynamics of the WIM. Furthermore, two Lagrangian particle studies were carried out: one in order to trace the origin of the upwelled waters along the WIM; the other in order to portrait the patterns of larval dispersal, accumulation and connectivity. The numerical configuration proved to be adequate in the reproduction of the system’s mean state, seasonal characterization and an interannual variability study. There is prevalence of poleward flow at the slope, which coexists with the upwelling jet during summer, although there is evidence of its shifting offshore, and which is associated with the Mediterranean Water flow at deeper levels, suggesting a barotropic character. From the future climate scenario essay, the following conclusions were drawn: there is general warming and freshening of upper level waters; there is still poleward tendency, and despite the upwellingfavorable winds strengthening in summer the respective coastal band becomes more restricted in width and depth. In what concerns larval connectivity and dispersion along the WIM, diel vertical migration was observed to increase recruitment throughout the domain, and while smooth coastlines are better suppliers, there is higher accumulation where the topography is rougher.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Candida albicans, a serine tRNA (tRNACAGSer) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os primeiros estudos onde se tentava avaliar os melhores horários para se lecionar de forma a se poderem otimizar os horários escolares são já muito antigos. O primeiro a estabelecer uma relação sistemática entre performance cognitiva, Cronobiologia e sono foi Kleitman, evidenciando uma paralelismo entre o ritmo circadiano da temperatura central e a altura do dia em que eram realizadas tarefas simples de repetição. Após este primeiro estudo, muitos outros se seguiram, contudo a maioria apenas encontrou ritmos em protocolos de rotina constante e dessincronização forçada desprovidos de validade ecológica. Acresce ainda o facto de neste tipo de estudos não haver uma manipulação sistemática do efeito do padrão individual de distribuição dos parâmetros circadianos no nictómero, designado na literatura como Cronotipo. Perante isto, o presente estudo pretende avaliar a influência do Cronotipo nos ritmos cognitivos, utilizando um protocolo de rotina normal (Ecológico), onde também se manipula o efeito fim-de-semana. Para testar as premissas supramencionadas, utilizou-se uma amostra de 16 alunos universitários, que numa primeira fase responderam ao questionário de Matutinidade e Vespertinidade de Horne&Östberg, para caracterização do Cronotipo, e posteriormente andaram 15-17 dias consecutivos com tempatilumis (actímetros) para análise de ritmos de temperatura e atividade, com iPads onde realizavam ao longo do dia várias tarefas cognitivas e com o Manual de Registo Diário, onde respondiam ao diário de sono e de atividade. A análise de dados denotou a inexistência de expressão de ritmos na maioria dos parâmetros cognitivos inviabilizando a verificação de diferenças significativas entre indivíduos matutinos e vespertinos nestes parâmetros. Esta ausência de visualização da expressão rítmica pode ser explicada pelo facto de os participantes não terem aderido da forma desejada e exigida, à realização das tarefas cognitivas, ou pelo facto de termos usado um protocolo de rotina normal, em detrimento dos protocolos de rotina constate e dessincronização forçada, não controlando assim algumas variáveis que influenciam o desempenho cognitivo, podendo estas mascarar ou mesmo eliminar o ritmo. Ainda assim e apesar destas contingências observaram-se ritmos circadianos nas variáveis de autoavaliação, mesmo com o paradigma ecológico. Verificou-se ainda um efeito da hora do dia em vários parâmetros de tarefas cognitivas e motoras medidas objetivamente, assim como uma diminuição da performance cognitiva nos vespertinos, comparativamente aos matutinos, na janela temporal das 6h às 12 horas, que coincide com a maior concentração de horas de aulas por dia na Universidade onde o estudo foi realizado. Outros estudos serão necessários para consolidar a influência do Cronotipo nos ritmos cognitivos, utilizando o protocolo de rotina normal para garantir a validade ecológica, salvaguardando uma participação mais ativa na execução das tarefas cognitivas por parte dos sujeitos em estudo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.