3 resultados para asymptotic suboptimality

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta dissertação estuda essencialmente dois problemas: (A) uma classe de equações unidimensionais de reacção-difusão-convecção em meios não uniformes (dependentes do espaço), e (B) um problema elíptico não-linear e paramétrico ligado a fenómenos de capilaridade. A Análise de Perturbação Singular e a dinâmica de Hamilton-Jacobi são utilizadas na obtenção de expressões assimptóticas para a solução (com comportamento de frente) e para a sua velocidade de propagação. Os seguintes três métodos de decomposição, Adomian Decomposition Method (ADM), Decomposition Method based on Infinite Products (DIP), e New Iterative Method (NIM), são apresentados e brevemente comparados. Adicionalmente, condições suficientes para a convergência da solução em série, obtida pelo ADM, e uma aplicação a um problema da Telecomunicações por Fibras Ópticas, envolvendo EDOs não-lineares designadas equações de Raman, são discutidas. Um ponto de vista mais abrangente que unifica os métodos de decomposição referidos é também apresentado. Para subclasses desta EDP são obtidas soluções numa forma explícita, para diferentes tipos de dados e usando uma variante do método de simetrias de Bluman-Cole. Usando Teoria de Pontos Críticos (o teorema usualmente designado mountain pass) e técnicas de truncatura, prova-se a existência de duas soluções não triviais (uma positiva e uma negativa) para o problema elíptico não-linear e paramétrico (B). A existência de uma terceira solução não trivial é demonstrada usando Grupos Críticos e Teoria de Morse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A optimização estrutural é uma temática antiga em engenharia. No entanto, com o crescimento do método dos elementos finitos em décadas recentes, dá origem a um crescente número de aplicações. A optimização topológica, especificamente, surge associada a uma fase de definição de domínio efectivo de um processo global de optimização estrutural. Com base neste tipo de optimização, é possível obter a distribuição óptima de material para diversas aplicações e solicitações. Os materiais compósitos e alguns materiais celulares, em particular, encontram-se entre os materiais mais proeminentes dos nossos dias, em termos das suas aplicações e de investigação e desenvolvimento. No entanto, a sua estrutura potencialmente complexa e natureza heterogénea acarretam grandes complexidades, tanto ao nível da previsão das suas propriedades constitutivas quanto na obtenção das distribuições óptimas de constituintes. Procedimentos de homogeneização podem fornecer algumas respostas em ambos os casos. Em particular, a homogeneização por expansão assimptótica pode ser utilizada para determinar propriedades termomecânicas efectivas e globais a partir de volumes representativos, de forma flexível e independente da distribuição de constituintes. Além disso, integra processos de localização e fornece informação detalhada acerca de sensibilidades locais em metodologias de optimização multiescala. A conjugação destas áreas pode conduzir a metodologias de optimização topológica multiescala, nas quais de procede à obtenção não só de estruturas óptimas mas também das distribuições ideais de materiais constituintes. Os problemas associados a estas abordagens tendem, no entanto, a exigir recursos computacionais assinaláveis, criando muitas vezes sérias limitações à exequibilidade da sua resolução. Neste sentido, técnicas de cálculo paralelo e distribuído apresentam-se como uma potencial solução. Ao dividir os problemas por diferentes unidades memória e de processamento, é possível abordar problemas que, de outra forma, seriam proibitivos. O principal foco deste trabalho centra-se na importância do desenvolvimento de procedimentos computacionais para as aplicações referidas. Adicionalmente, estas conduzem a diversas abordagens alternativas na procura simultânea de estruturas e materiais para responder a aplicações termomecânicas. Face ao exposto, tudo isto é integrado numa plataforma computacional de optimização multiobjectivo multiescala em termoelasticidade, desenvolvida e implementada ao longo deste trabalho. Adicionalmente, o trabalho é complementado com a montagem e configuração de um cluster do tipo Beowulf, assim como com o desenvolvimento do código com vista ao cálculo paralelo e distribuído.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on the application of optimal alarm systems to non linear time series models. The most common classes of models in the analysis of real-valued and integer-valued time series are described. The construction of optimal alarm systems is covered and its applications explored. Considering models with conditional heteroscedasticity, particular attention is given to the Fractionally Integrated Asymmetric Power ARCH, FIAPARCH(p; d; q) model and an optimal alarm system is implemented, following both classical and Bayesian methodologies. Taking into consideration the particular characteristics of the APARCH(p; q) representation for financial time series, the introduction of a possible counterpart for modelling time series of counts is proposed: the INteger-valued Asymmetric Power ARCH, INAPARCH(p; q). The probabilistic properties of the INAPARCH(1; 1) model are comprehensively studied, the conditional maximum likelihood (ML) estimation method is applied and the asymptotic properties of the conditional ML estimator are obtained. The final part of the work consists on the implementation of an optimal alarm system to the INAPARCH(1; 1) model. An application is presented to real data series.