2 resultados para Vesicoureteral reflux
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In this thesis, 2,2’-bipyridine (bipy), di-tert-butyl-2,2’-bipyridine (di-t-Bubipy), 2,2’-bipyridine-5,5’-dicarboxylic acid (H2bpdc), 2-[3(5)-pyrazolyl]pyridine (pzpy) and 2-(1-pentyl-3-pyrazolyl)pyridine (pent-pp) ligands were used as the N,N-chelate ligands in the formation of discrete [MoO2Cl2L]-type complexes. These complexes were employed as precursors for the preparation in aqueous media of oxomolybdenum(VI) products with a wide range of structural diversity. Three distinct heating methods were studied: hydrothermal, reflux or microwave-assisted synthesis. An alternative reaction with the inorganic molybdenum(VI) trioxide (MoO3) and the ligands di-t-Bu-bipy, H2bpdc and pzpy was also investigated under hydrothermal conditions. The distinct nature of the N,N-chelate ligands and/or the heating method employed promoted the isolation of a series of new oxomolybdenum(VI) hybrid materials that clearly reflected the strong structure-directing influence of these ligands. Thus, this thesis describes the synthesis and characterization of the discrete mononuclear [MoO2Cl2(pent-pp)], the dinuclear [Mo2O6(di-t-Bu-bipy)2] and the octanuclear [Mo8O22(OH)4(di-t-Bu-bipy)4] complexes as well as the highly unique polymeric materials {[MoO3(bipy)][MoO3(H2O)]}n, (DMA)[MoO3(Hbpdc)]·nH2O, [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n (fine structural details of compound [Mo2O6(pent-pp)]n are presently unknown; however, characterization data strongly pointed toward a polymeric oxide hybrid compound). The catalytic behaviour of the discrete complexes and the polymeric compounds was tested in olefin epoxidation reactions. Compounds [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n acted as sources of soluble active species that where identified as the oxodiperoxido complexes [MoO(O2)2(pzpy)] and [MoO(O2)2(pent-pp)], respectively. The majority of the compounds here presented were fully characterized by using solid-state techniques, namely elemental analyses, thermogravimetry, FT-IR, solid-state NMR, electron microscopy and powder X-ray diffraction (both from laboratory and/or synchrotron sources).
Resumo:
In a industrial environment, to know the process one is working with is crucial to ensure its good functioning. In the present work, developed at Prio Biocombustíveis S.A. facilities, using process data, collected during the present work, and historical process data, the methanol recovery process was characterized, having started with the characterization of key process streams. Based on the information retrieved from the stream characterization, Aspen Plus® process simulation software was used to replicate the process and perform a sensitivity analysis with the objective of accessing the relative importance of certain key process variables (reflux/feed ratio, reflux temperature, reboiler outlet temperature, methanol, glycerol and water feed compositions). The work proceeded with the application of a set of statistical tools, starting with the Principal Components Analysis (PCA) from which the interactions between process variables and their contribution to the process variability was studied. Next, the Design of Experiments (DoE) was used to acquire experimental data and, with it, create a model for the water amount in the distillate. However, the necessary conditions to perform this method were not met and so it was abandoned. The Multiple Linear Regression method (MLR) was then used with the available data, creating several empiric models for the water at distillate, the one with the highest fit having a R2 equal to 92.93% and AARD equal to 19.44%. Despite the AARD still being relatively high, the model is still adequate to make fast estimates of the distillate’s quality. As for fouling, its presence has been noticed many times during this work. Not being possible to directly measure the fouling, the reboiler inlet steam pressure was used as an indicator of the fouling growth and its growth variation with the amount of Used Cooking Oil incorporated in the whole process. Comparing the steam cost associated to the reboiler’s operation when fouling is low (1.5 bar of steam pressure) and when fouling is high (reboiler’s steam pressure of 3 bar), an increase of about 58% occurs when the fouling increases.