2 resultados para VM Naval architecture. Shipbuilding. Marine engineering
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Access control is a software engineering challenge in database applications. Currently, there is no satisfactory solution to dynamically implement evolving fine-grained access control mechanisms (FGACM) on business tiers of relational database applications. To tackle this access control gap, we propose an architecture, herein referred to as Dynamic Access Control Architecture (DACA). DACA allows FGACM to be dynamically built and updated at runtime in accordance with the established fine-grained access control policies (FGACP). DACA explores and makes use of Call Level Interfaces (CLI) features to implement FGACM on business tiers. Among the features, we emphasize their performance and their multiple access modes to data residing on relational databases. The different access modes of CLI are wrapped by typed objects driven by FGACM, which are built and updated at runtime. Programmers prescind of traditional access modes of CLI and start using the ones dynamically implemented and updated. DACA comprises three main components: Policy Server (repository of metadata for FGACM), Dynamic Access Control Component (DACC) (business tier component responsible for implementing FGACM) and Policy Manager (broker between DACC and Policy Server). Unlike current approaches, DACA is not dependent on any particular access control model or on any access control policy, this way promoting its applicability to a wide range of different situations. In order to validate DACA, a solution based on Java, Java Database Connectivity (JDBC) and SQL Server was devised and implemented. Two evaluations were carried out. The first one evaluates DACA capability to implement and update FGACM dynamically, at runtime, and, the second one assesses DACA performance against a standard use of JDBC without any FGACM. The collected results show that DACA is an effective approach for implementing evolving FGACM on business tiers based on Call Level Interfaces, in this case JDBC.
Resumo:
The evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.