3 resultados para VINIFERA

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vitis vinifera L., the most widely cultivated fruit crop in the world, was the starting point for the development of this PhD thesis. This subject was exploited following on two actual trends: i) the development of rapid, simple, and high sensitive methodologies with minimal sample handling; and ii) the valuation of natural products as a source of compounds with potential health benefits. The target group of compounds under study were the volatile terpenoids (mono and sesquiterpenoids) and C13 norisoprenoids, since they may present biological impact, either from the sensorial point of view, as regards to the wine aroma, or by the beneficial properties for the human health. Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, a rapid method, was based on the headspace solid-phase microextraction combined with gas chromatography-quadrupole mass spectrometry operating at selected ion monitoring mode (HS-SPME/GC-qMS-SIM), using GC conditions that allowed obtaining a C13 norisoprenoid volatile signature. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. The second methodology, used as reference method, was based on the HS-SPME/GC-qMS-SIM, allowing the GC conditions for an adequate chromatographic resolution of wine components. For quantification purposes, external calibration curves were constructed with β-ionone, with regression coefficient (r2) of 0.9968 (RSD 12.51 %) and 0.9940 (RSD of 1.08 %) for the rapid method and for the reference method, respectively. Low detection limits (1.57 and 1.10 μg L-1) were observed. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158-1529 L-1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42-39.45 μg L-1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). A rapid methodology for the establishment of the varietal volatile profile of Vitis vinifera L. cv. 'Fernão-Pires' (FP) white wines by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GCxGC-TOFMS) was developed. Monovarietal wines from different harvests, Appellations, and producers were analysed. The study was focused on the volatiles that seem to be significant to the varietal character, such as mono and sesquiterpenic compounds, and C13 norisoprenoids. Two-dimensional chromatographic spaces containing the varietal compounds using the m/z fragments 93, 121, 161, 175 and 204 were established as follows: 1tR = 255-575 s, 2tR = 0,424-1,840 s, for monoterpenoids, 1tR = 555-685 s, 2tR = 0,528-0,856 s, for C13 norisoprenoids, and 1tR = 695-950 s, 2tR = 0,520-0,960 s, for sesquiterpenic compounds. For the three chemical groups under study, from a total of 170 compounds, 45 were determined in all wines, allowing defining the "varietal volatile profile" of FP wine. Among these compounds, 15 were detected for the first time in FP wines. This study proposes a HS-SPME/GCxGC-TOFMS based methodology combined with classification-reference sample to be used for rapid assessment of varietal volatile profile of wines. This approach is very useful to eliminate the majority of the non-terpenic and non-C13 norisoprenic compounds, allowing the definition of a two-dimensional chromatographic space containing these compounds, simplifying the data compared to the original data, and reducing the time of analysis. The presence of sesquiterpenic compounds in Vitis vinifera L. related products, to which are assigned several biological properties, prompted us to investigate the antioxidant, antiproliferative and hepatoprotective activities of some sesquiterpenic compounds. Firstly, the antiradical capacity of trans,trans-farnesol, cis-nerolidol, α-humulene and guaiazulene was evaluated using chemical (DPPH• and hydroxyl radicals) and biological (Caco-2 cells) models. Guaiazulene (IC50= 0.73 mM) was the sesquiterpene with higher scavenger capacity against DPPH•, while trans,trans-farnesol (IC50= 1.81 mM) and cis-nerolidol (IC50= 1.48 mM) were more active towards hydroxyl radicals. All compounds, with the exception of α-humulene, at non-cytotoxic levels (≤ 1 mM), were able to protect Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide. The activity of the compounds under study was also evaluated as antiproliferative agents. Guaiazulene and cis-nerolidol were able to more effectively arrest the cell cycle in the S-phase than trans,trans-farnesol and α-humulene, being the last almost inactive. The relative hepatoprotection effect of fifteen sesquiterpenic compounds, presenting different chemical structures and commonly found in plants and plant-derived foods and beverages, was assessed. Endogenous lipid peroxidation and induced lipid peroxidation with tert-butyl hydroperoxide were evaluated in liver homogenates from Wistar rats. With the exception of α-humulene, all the sesquiterpenic compounds under study (1 mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The developed 3D-QSAR models, relating the hepatoprotection activity with molecular properties, showed good fit (R2LOO > 0.819) with good prediction power (Q2 > 0.950 and SDEP < 2%) for both models. A network of effects associated with structural and chemical features of sesquiterpenic compounds such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds. In conclusion, this study allowed the development of rapid and in-depth methods for the assessment of varietal volatile compounds that might have a positive impact on sensorial and health attributes related to Vitis vinifera L. These approaches can be extended to the analysis of other related food matrices, including grapes and musts, among others. In addition, the results of in vitro assays open a perspective for the promising use of the sesquiterpenic compounds, with similar chemical structures such as those studied in the present work, as antioxidants, hepatoprotective and antiproliferative agents, which meets the current challenges related to diseases of modern civilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sustainable viticulture of a region passes, among other aspects, for maximizing the varieties potential minimizing subsequent interventions during winemaking, which should contribute to the production of quality wines maintaining their typicity and rationalizing costs. The detailed knowledge of each Appellation specificities, namely vineyard parcel (soil type and topographical peculiarities) and harvest climatic conditions is crucial for sustainability in this sector. Thus, in line with this current trend, the starting point for the development of this PhD thesis was to evaluate the oenological potential of different varieties cultivated throughout Bairrada Appellation (Portugal). During maturation several changes in grape varieties occur, namely berries become sweeter, less acidic, and they develop flavour, aroma and colour properties. The development of these characteristics is essential to define grapes oenological potential, i.e. to estimate the possibility of their usage to produce specific wines. A three years sampling plan was designed to evaluate the effect of harvest year and parcel characteristics on V. vinifera cv. Arinto, Bical, Sauvignon Blanc, Baga, Castelão, Touriga Nacional, and Sousão grapes composition. For each variety, 3 parcels with different characteristics were selected. Several physicochemical parameters were evaluated, during maturation: berry weight, pH, titratable acidity, sugar and phenolic contents, antiradical activity, and volatile composition (free fraction). Special attention was devoted to grapes at technologic maturity, since, besides these parameters, glycosidically-linked fraction was also considered. By using the results obtained at technologic maturity, a comprehensive approach was applied to identify the significance of harvest and parcel characteristics effects on each variety composition. Considering all the parameters under study, it may be highlighted some significant differences. According to the obtained results determined during maturation, it was possible to conclude that Arinto, Bical and Sauvignon Blanc grapes from parcels with clay-sandy and clay-calcareous soils have higher phenolic content and antiradical activity. Otherwise, Sauvignon Blanc presented similar volatile composition for grapes cultivated in the 3 parcels, while Arinto and Bical exhibited higher volatile content in grapes from claysandy and clay-calcareous soils. For Baga, Castelão and Touriga Nacional red varieties, grapes with higher phenolic content, antiradical activity, and volatile content were obtained from clayey and clay-calcareous soils. Furthermore, for Touriga Nacional, parcels altitude seems also to modulate grapes composition. Beyond parcel effect, harvest year conditions also influence grapes composition: 2011 harvest was related with lower phenolic and volatile contents, as well as lower antiradical activity.For grapes collected at technologic maturity, analysis of variance-simultaneous component analysis (ASCA) was applied combining all the parameters under study, in order to assess the influence of harvest and parcel characteristics on each variety oenological potential. The results obtained using this comprehensive approach is closely related with those observed during maturation and revealed that harvest was the main factor that influenced grapes composition (53% to 68% of the total data set variance) followed by parcel characteristics, explaining ca. 15-19% of the total data set variance. The oenological potential of each variety may be different from one parcel to another, i.e., clay-sandy and clay-calcareous related-environments seem to favour Arinto and Bical white grapes composition, but for the red varieties, grapes composition was favoured by clayey and clay-calcareous soils. Besides, also higher altitude seems to favour Touriga Nacional grapes composition. Sauvignon Blanc seems to be a variety well adapted to the different parcel characteristics. In order to go forward in the valuation of these varieties, the aroma properties of 6 monovarietal wines were studied based on an aroma network-approach, linking molecular data related to volatile composition and aroma data about the key odor active molecules. This approach allowed to identify different wine aroma properties and to infer about the consumer’s sensory perception. It was found that aroma properties differ from one wine variety to another: while Arinto and Sauvignon Blanc wine exhibited higher tree fruity, sweety and flowery aromas, related essentially with ester compounds and C13 norisoprenoids, the opposite was obtained for Bical wine, corroborating the aroma sensory perceptions of the trained panel. Sauvignon Blanc also exhibited higher toasted aromas (related with thiols, mainly with 2-methyl-3-furanthiol). Touriga Nacional red wine exhibited higher tree, tropical, and berry fruits notes (sensory described as sweet fruits), toasted and flowery aromas, while these are similar for the other red wines under study. Besides Portuguese Bairrada wines, this aroma network approach is a tool that can be used to explain the aroma properties of wines worldwide. The grape and wine data generated under the present PhD thesis, in the context of Bairrada Appellation, shows the unique character of each variety, and may be used by growers and wine producers as a support for decisionmaking based on objective criteria, increasing the sustainability in this sector. For instance, it is possible to take advantage of the natural resources and produce products with different characteristics obtained from the same variety, minimizing costs during the winemaking process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.