13 resultados para Riemann-Liouville fractional derivative, Grunwald-Letnikov fractional derivative, Caputo fractional derivative, Riesz fractional derivative, fractional Laplacian, anomalous diffusion, fractional diffusion equation, fractional advection-dispersion equation

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we generalize radial and standard Clifford-Hermite polynomials to the new framework of fractional Clifford analysis with respect to the Riemann-Liouville derivative in a symbolic way. As main consequence of this approach, one does not require an a priori integration theory. Basic properties such as orthogonality relations, differential equations, and recursion formulas, are proven.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a new discretization for the Hadamard fractional derivative, that simplifies the computations. We then apply the method to solve a fractional differential equation and a fractional variational problem with dependence on the Hadamard fractional derivative.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we consider a Caputo type fractional derivative with respect to another function. Some properties, like the semigroup law, a relationship between the fractional derivative and the fractional integral, Taylor’s Theorem, Fermat’s Theorem, etc., are studied. Also, a numerical method to deal with such operators, consisting in approximating the fractional derivative by a sum that depends on the first-order derivative, is presented. Relying on examples, we show the efficiency and applicability of the method. Finally, an application of the fractional derivative, by considering a Population Growth Model, and showing that we can model more accurately the process using different kernels for the fractional operator is provided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present a new type of fractional operator, the Caputo–Katugampola derivative. The Caputo and the Caputo–Hadamard fractional derivatives are special cases of this new operator. An existence and uniqueness theorem for a fractional Cauchy type problem, with dependence on the Caputo–Katugampola derivative, is proven. A decomposition formula for the Caputo–Katugampola derivative is obtained. This formula allows us to provide a simple numerical procedure to solve the fractional differential equation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, by using the method of separation of variables, we obtain eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator defined via fractional Caputo derivatives. The solutions are expressed using the Mittag-Leffler function and we show some graphical representations for some parameters. A family of fundamental solutions of the corresponding fractional Dirac operator is also obtained. Particular cases are considered in both cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper deals with fractional differential equations, with dependence on a Caputo fractional derivative of real order. The goal is to show, based on concrete examples and experimental data from several experiments, that fractional differential equations may model more efficiently certain problems than ordinary differential equations. A numerical optimization approach based on least squares approximation is used to determine the order of the fractional operator that better describes real data, as well as other related parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Estudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fraccionário em tempo discreto. Obtemos as correspondentes condições necessárias de Euler– Lagrange e Legendre, ilustrando depois a teoria com alguns exemplos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resumo indisponível.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to exhibit a necessary and sufficient condition of optimality for functionals depending on fractional integrals and derivatives, on indefinite integrals and on presence of time delay. We exemplify with one example, where we nd analytically the minimizer.