6 resultados para Polarization switching
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Nesta tese, ferroeléctricos relaxor (I dont know uf the order is correct) de base Pb das familias (Pb,La)(Zr,Ti)O3 (PLZT), Pb(Mg1/3,Nb2/3)O3-PbTiO3 (PMN-PT), Pb(Zn1/3,Nb2/3)O3-PbTiO3 (PZN-PT) foram investigados e analisados. As propriedades ferroeléctricas e dieléctricas das amostras foram estudadas por métodos convencionais de macro e localmente por microscopia de força piezoeléctrica (PFM). Nos cerâmicos PLZT 9.75/65/35 o contraste da PFM à escala nanometrica _ foi investigado em função do tamanho e orientação dos grãos. Apurou-se que a intensidade do sinal piezoeléctrico das nanoestruturas diminui com o aumento da temperatura e desaparece a 490 K (La mol. 8%) e 420 K (9,5%). Os ciclos de histerese locais foram obtidos em função da temperatura. A evolução dos parâmetros macroscópicos e locais com a temperatura de superfície sugere um forte efeito de superfície nas transições de fase ferroeléctricas do material investigado. A rugosidade da parede de domínio é determinada por PFM para a estrutura de domínio natural existente neste ferroeléctrico policristalino. Além disso, os domínios ferroeléctricos artificiais foram criados pela aplicação de pulsos eléctricos à ponta do condutor PFM e o tamanho de domínio in-plane foi medido em função da duração do pulso. Todas estas experiências levaram à conclusão de que a parede de domínio em relaxors do tipo PZT é quase uma interface unidimensional. O mecanismo de contraste na superfície de relaxors do tipo PLZT é medido por PFMAs estruturas de domínio versus evolução da profundidade foram estudadas em cristais PZN-4,5%PT, com diferentes orientações através da PFM. Padrões de domínio irregulares com tamanhos típicos de 20-100 nm foram observados nas superfícies com orientação <001> das amostras unpoled?. Pelo contrário, os cortes de cristal <111> exibem domínios regulares de tamanho mícron normal, com os limites do domínio orientados ao longo dos planos cristalográficos permitidos. A existência de nanodomínios em cristais com orientação <001> está provisoriamente (wrong Word) atribuída à natureza relaxor de PZN-PT, onde pequenos grupos polares podem formar-se em coindições de zero-field-cooling (ZFC). Estes nanodomínios são considerados como os núcleos do estado de polarização oposta e podem ser responsáveis pelo menor campo coercitivo para este corte de cristal em particular. No entanto, a histerese local piezoelétrica realizada pelo PFM à escala nanométrica indica uma mudança de comportamento de PZN-PT semelhante para ambas as orientações cristalográficas investigadas. A evolução das estruturas de domínio com polimento abaixo da superfície do cristal foi investigada. O domínio de ramificações e os efeitos de polarização de triagem após o polimento e as medições de temperatura têm sido estudados pela PFM e pela análise SEM. Além disso, verificou-se que a intensidade do sinal piezoeléctrico a partir das estruturas de nanodomínio diminui com o aumento da temperatura, acabando por desaparecer aos 430 K (orientaçáo <111>) e 470 K (orientação <100>). Esta diferença de temperatura nas transições de fase local em cristais de diferentes orientações é explicada pelo forte efeito de superfície na transição da fase ferroelétrica em relaxors.A comutação da polarização em relaxor ergódico e nas fases ferroeléctricas do sistema PMN-PT foram realizadas pela combinação de três métodos, Microscopia de Força Piezoeléctrica, medição de um único ponto de relaxamento eletromecânico e por ultimo mapeamento de espectroscopia de tensão. A dependência do comportamento do relaxamento na amplitude e tempo da tensão de pulso foi encontrada para seguir um comportamento logarítmico universal com uma inclinação quase constante. Este comportamento é indicativo da progressiva população dos estados de relaxamento lento, ao contrário de uma relaxação linear na presença de uma ampla distribuição do tempo de relaxamento. O papel do comportamento de relaxamento, da não-linearidade ferroeléctrica e da heterogeneidade espacial do campo na ponta da sonda de AFM sobre o comportamento do ciclo de histerese é analisada em detalhe. Os ciclos de histerese para ergódica PMN- 10%PT são mostrados como cineticamente limitados, enquanto que no PMN, com maior teor de PT, são observados verdadeiros ciclos de histerese ferroeléctrica com viés de baixa nucleação.
Resumo:
Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and switchable polarization at room temperature. Here we study piezoelectricity and ferroelectricity in the smallest amino acid glycine, representing a broad class of non-centrosymmetric amino acids. Glycine is one of the basic and important elements in biology, as it serves as a building block for proteins. Three polymorphic forms with different physical properties are possible in glycine (α, β and γ), Of special interest for various applications are non-centrosymmetric polymorphs: β-glycine and γ-glycine. The most useful β-polymorph being ferroelectric took much less attention than the other due to its instability under ambient conditions. In this work, we could grow stable microcrystals of β-glycine by the evaporation of aqueous solution on a (111)Pt/Ti/SiO2/Si substrate as a template. The effects of the solution concentration and Pt-assisted nucleation on the crystal growth and phase evolution were characterized by X-ray diffraction analysis and Raman spectroscopy. In addition, spin-coating technique was used for the fabrication of highly aligned nano-islands of β-glycine with regular orientation of the crystallographic axes relative the underlying substrate (Pt). Further we study both as-grown and tip-induced domain structures and polarization switching in the β-glycine molecular systems by Piezoresponse Force Microscopy (PFM) and compare the results with molecular modeling and computer simulations. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of applied voltage and pulse duration. The domain shape is dictated by both internal and external polarization screening mediated by defects and topographic features. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that β-glycine is a uniaxial ferroelectric with the properties controlled by the charged domain walls which in turn can be manipulated by external bias. Besides, nonlinear optical properties of β-glycine were investigated by a second harmonic generation (SHG) method. SHG method confirmed that the 2-fold symmetry is preserved in as-grown crystals, thus reflecting the expected P21 symmetry of the β-phase. Spontaneous polarization direction is found to be parallel to the monoclinic [010] axis and directed along the crystal length. These data are confirmed by computational molecular modeling. Optical measurements revealed also relatively high values of the nonlinear optical susceptibility (50% greater than in the z-cut quartz). The potential of using stable β-glycine crystals in various applications are discussed in this work.
Resumo:
The comprehensive study on the coupling of magnetism, electrical polarization and the crystalline lattice with the off-stoichiometric effects in self-doped multiferroic hexagonal h-LuMnxO3±δ (0.92≤x≤1.12) ceramic oxides was carried out for the PhD work. There is a complex coupling of the three ferroic degrees. The cancelation of the magnetic moments of ions in the antiferromagnetic order, electric polarization with specific vortex/antivortex topology and lattice properties have pushed researchers to find out ways to disclose the underlying physics and chemistry of magneto-electric and magneto-elastic couplings of h-RMnO3 multiferroic materials. In this research work, self-doping of Lu-sites or Mn-sites of h-LuMnxO3±δ ceramics prepared via solid state route was done to pave a way for deeper understanding of the antiferromagnetic transition, the weak ferromagnetism often reported in the same crystalline lattices and the ferroelectric properties coupled to the imposed lattice changes. Accordingly to the aim of the PhD thesis, the objectives set for the sintering study in the first chapter on experimental results were two. First, study of sintering off-stoichiometric samples within conditions reported in the bibliography and also extracted from the phase diagrams of the LuMnxO3±δ, with a multiple firings ending with a last high temperature step at 1300ºC for 24 hours. Second, explore longer annealing times of up to 240 hours at the fixed temperature of 1300 ºC in a search for improving the properties of the solid solution under study. All series of LuMnxO3±δ ceramics for each annealing time were characterized to tentatively build a framework enabling comparison of measured properties with results of others available in literature. XRD and Rietveld refinement of data give the evolution the lattice parameters as a function to x. Shrinkage of the lattice parameters with increasing x values was observed, the stability limit of the solid solution being determined by analysis of lattice parameters. The evolution of grain size and presence of secondary phases have been investigated by means of TEM, SEM, EDS and EBSD techniques. The dependencies of grain growth and regression of secondary phases on composition x and time were further characterized. Magnetic susceptibility of samples and magnetic irreversibility were extensively examined in the present work. The dependency of magnetic susceptibility, Neel ordering transition and important magnetic parameters are determined and compared to observation in other multiferroics in the following chapter of the thesis. As a tool of high sensitivity to detect minor traces of the secondary phase hausmannite, magnetic measurements are suggested for cross-checking of phase diagrams. Difficulty of previous studies on interpreting the magnetic anomaly below 43 K in h-RMnO3 oxides was discussed and assigned to the Mn3O4 phase, with supported of the electron microscopy. Magneto-electric coupling where AFM ordering is coupled to dielectric polarization is investigated as a function of x and of sintering condition via frequency and temperature dependent complex dielectric constant measurements in the final chapter of the thesis. Within the limits of solid solubility, the crystalline lattice of off-stoichiometric ceramics was shown to preserve the magneto-electric coupling at TN. It represents the first research work on magneto-electric coupling modified by vacancy doping to author’s knowledge. Studied lattices would reveal distortions at the atomic scale imposed by local changes of x dependent on sintering conditions which were widely inspected by using TEM/STEM methods, complemented with EDS and EELS spectroscopy all together to provide comprehensive information on cross coupling of distortions, inhomogeneity and electronic structure assembled and discussed in a specific chapter. Internal interfaces inside crystalline grains were examined. Qualitative explanations of the measured magnetic and ferroelectric properties were established in relation to observed nanoscale features of h-LuMnxO3±δ ceramics. Ferroelectric domains and topological defects are displayed both in TEM and AFM/PFM images, the later technique being used to look at size, distribution and switching of ferroelectric domains influenced by vacancy doping at the micron scale bridging to complementary TEM studies on the atomic structure of ferroelectric domains. In support to experimental study, DFT simulations using Wien2K code have been carried out in order to interpret the results of EELS spectra of O K-edge and to obtain information on the cation hybridization to oxygen ions. The L3,2 edges of Mn is used to access the oxidation state of the Mn ions inside crystalline grains. In addition, rehybridization driven ferroelectricity is also evaluated by comparing the partial density of states of the orbitals of all ions of the samples, also the polarization was calculated and correlated to the off-stoichiometric effect.
Resumo:
Os Sistemas Embarcados Distribuídos (SEDs) estão, hoje em dia, muito difundidos em vastas áreas, desde a automação industrial, a automóveis, aviões, até à distribuição de energia e protecção do meio ambiente. Estes sistemas são, essencialmente, caracterizados pela integração distribuída de aplicações embarcadas, autónomas mas cooperantes, explorando potenciais vantagens em termos de modularidade, facilidade de manutenção, custos de instalação, tolerância a falhas, entre outros. Contudo, o ambiente operacional onde se inserem estes tipos de sistemas pode impor restrições temporais rigorosas, exigindo que o sistema de comunicação subjacente consiga transmitir mensagens com garantias temporais. Contudo, os SEDs apresentam uma crescente complexidade, uma vez que integram subsistemas cada vez mais heterogéneos, quer ao nível do tráfego gerado, quer dos seus requisitos temporais. Em particular, estes subsistemas operam de forma esporádica, isto é, suportam mudanças operacionais de acordo com estímulos exteriores. Estes subsistemas também se reconfiguram dinamicamente de acordo com a actualização dos seus requisitos e, ainda, têm lidar com um número variável de solicitações de outros subsistemas. Assim sendo, o nível de utilização de recursos pode variar e, desta forma, as políticas de alocação estática tornam-se muito ineficientes. Consequentemente, é necessário um sistema de comunicação capaz de suportar com eficácia reconfigurações e adaptações dinâmicas. A tecnologia Ethernet comutada tem vindo a emergir como uma solução sólida para fornecer comunicações de tempo-real no âmbito dos SEDs, como comprovado pelo número de protocolos de tempo-real que foram desenvolvidos na última década. No entanto, nenhum dos protocolos existentes reúne as características necessárias para fornecer uma eficiente utilização da largura de banda e, simultaneamente, para respeitar os requisitos impostos pelos SEDs. Nomeadamente, a capacidade para controlar e policiar tráfego de forma robusta, conjugada com suporte à reconfiguração e adaptação dinâmica, não comprometendo as garantias de tempo-real. Esta dissertação defende a tese de que, pelo melhoramento dos comutadores Ethernet para disponibilizarem mecanismos de reconfiguração e isolamento de tráfego, é possível suportar aplicações de tempo-real críticas, que são adaptáveis ao ambiente onde estão inseridas.Em particular, é mostrado que as técnicas de projecto, baseadas em componentes e apoiadas no escalonamento hierárquico de servidores de tráfego, podem ser integradas nos comutadores Ethernet para alcançar as propriedades desejadas. Como suporte, é fornecida, também, uma solução para instanciar uma hierarquia reconfigurável de servidores de tráfego dentro do comutador, bem como a análise adequada ao modelo de escalonamento. Esta última fornece um limite superior para o tempo de resposta que os pacotes podem sofrer dentro dos servidores de tráfego, com base unicamente no conhecimento de um dado servidor e na hierarquia actual, isto é, sem o conhecimento das especifidades do tráfego dentro dos outros servidores. Finalmente, no âmbito do projecto HaRTES foi construído um protótipo do comutador Ethernet, o qual é baseado no paradigma “Flexible Time-Triggered”, que permite uma junção flexível de uma fase síncrona para o tráfego controlado pelo comutador e uma fase assíncrona que implementa a estrutura hierárquica de servidores referidos anteriormente. Além disso, as várias experiências práticas realizadas permitiram validar as propriedades desejadas e, consequentemente, a tese que fundamenta esta dissertação.
Resumo:
In this thesis we perform a detailed analysis of the state of polarization (SOP) of light scattering process using a concatenation of ber-coil based polarization controllers (PCs). We propose a polarization-mode dispersion (PMD) emulator, built through the concatenation of bercoil based PCs and polarization-maintaining bers (PMFs), capable of generate accurate rst- and second-order PMD statistics. We analyze the co-propagation of two optical waves inside a highbirefringence ber. The evolution along the ber of the relative SOP between the two signals is modeled by the de nition of the degree of co-polarization parameter. We validate the model for the degree of co-polarization experimentally, exploring the polarization dependence of the four-wave mixing e ect into a ber with high birefringence. We also study the interaction between signal and noise mediated by Kerr e ect in optical bers. A model accurately describing ampli ed spontaneous emission noise in systems with distributed Raman gain is derived. We show that the noise statistics depends on the propagation distance and on the signal power, and that for distances longer than 120 km and signal powers higher than 6 mW it deviates signi catively from the Gaussian distribution. We explore the all-optical polarization control process based on the stimulated Raman scattering e ect. Mapping parameters like the degree of polarization (DOP), we show that the preferred ampli cation of one particular polarization component of the signal allows a polarization pulling over a wavelength range of 60 nm. The e ciency of the process is higher close to the maximum Raman gain wavelength, where the DOP is roughly constant for a wavelength range of 15 nm. Finally, we study the polarization control in quantum key distribution (QKD) systems with polarization encoding. A model for the quantum bit error rate estimation in QKD systems with time-division multiplexing and wavelength-division multiplexing based polarization control schemes is derived.
Resumo:
This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.