5 resultados para Point of view
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field.
Resumo:
A indústria aeronáutica utiliza ligas de alumínio de alta resistência para o fabrico dos elementos estruturais dos aviões. As ligas usadas possuem excelentes propriedades mecânicas mas apresentam simultaneamente uma grande tendência para a corrosão. Por esta razão essas ligas necessitam de protecção anticorrosiva eficaz para poderem ser utilizadas com segurança. Até à data, os sistemas anticorrosivos mais eficazes para ligas de alumínio contêm crómio hexavalente na sua composição, sejam pré-tratamentos, camadas de conversão ou pigmentos anticorrosivos. O reconhecimento dos efeitos carcinogénicos do crómio hexavalente levou ao aparecimento de legislação banindo o uso desta forma de crómio pela indústria. Esta decisão trouxe a necessidade de encontrar alternativas ambientalmente inócuas mas igualmente eficazes. O principal objectivo do presente trabalho é o desenvolvimento de prétratamentos anticorrosivos activos para a liga de alumínio 2024, baseados em revestimentos híbridos produzidos pelo método sol-gel. Estes revestimentos deverão possuir boa aderência ao substrato metálico, boas propriedades barreira e capacidade anticorrosiva activa. A protecção activa pode ser alcançada através da incorporação de inibidores anticorrosivos no prétratamento. O objectivo foi atingido através de uma sucessão de etapas. Primeiro investigou-se em detalhe a corrosão localizada (por picada) da liga de alumínio 2024. Os resultados obtidos permitiram uma melhor compreensão da susceptibilidade desta liga a processos de corrosão localizada. Estudaram-se também vários possíveis inibidores de corrosão usando técnicas electroquímicas e microestruturais. Numa segunda etapa desenvolveram-se revestimentos anticorrosivos híbridos orgânico-inorgânico baseados no método sol-gel. Compostos derivados de titania e zirconia foram combinados com siloxanos organofuncionais a fim de obter-se boa aderência entre o revestimento e o substrato metálico assim como boas propriedades barreira. Testes industriais mostraram que estes novos revestimentos são compatíveis com os esquemas de pintura convencionais actualmente em uso. A estabilidade e o prazo de validade das formulações foram optimizados modificando a temperatura de armazenamento e a quantidade de água usada durante a síntese. As formulações sol-gel foram dopadas com os inibidores seleccionados durante a primeira etapa e as propriedades anticorrosivas passivas e activas dos revestimentos obtidos foram estudadas numa terceira etapa do trabalho. Os resultados comprovam a influência dos inibidores nas propriedades anticorrosivas dos revestimentos sol-gel. Em alguns casos a acção activa dos inibidores combinou-se com a protecção passiva dada pelo revestimento mas noutros casos terá ocorrido interacção química entre o inibidor e a matriz de sol-gel, de onde resultou a perda de propriedades protectoras do sistema combinado. Atendendo aos problemas provocados pela adição directa dos inibidores na formulação sol-gel procurou-se, numa quarta etapa, formas alternativas de incorporação. Na primeira, produziu-se uma camada de titania nanoporosa na superfície da liga metálica que serviu de reservatório para os inibidores. O revestimento sol-gel foi aplicado por cima da camada nanoporosa. Os inibidores armazenados nos poros actuam quando o substrato fica exposto ao ambiente agressivo. Numa segunda, os inibidores foram armazenados em nano-reservatórios de sílica ou em nanoargilas (halloysite), os quais foram revestidos por polielectrólitos montados camada a camada. A terceira alternativa consistiu no uso de nano-fios de molibdato de cério amorfo como inibidores anticorrosivos nanoparticulados. Os nano-reservatórios foram incorporados durante a síntese do sol-gel. Qualquer das abordagens permitiu eliminar o efeito negativo do inibidor sobre a estabilidade da matriz do sol-gel. Os revestimentos sol-gel desenvolvidos neste trabalho apresentaram protecção anticorrosiva activa e capacidade de auto-reparação. Os resultados obtidos mostraram o elevado potencial destes revestimentos para a protecção anticorrosiva da liga de alumínio 2024.
Resumo:
Nowadays, a systems biology approach is both a challenge as well as believed to be the ideal form of understanding the organisms’ mechanisms of response. Responses at different levels of biological organization should be integrated to better understand the mechanisms, and hence predict the effects of stress agents, usable in broader contexts. The main aim of this thesis was to evaluate the underlying mechanisms of Enchytraeus albidus responses to chemical stressors. Therefore, there was a large investment on the gene library enrichment for this species, as explained ahead. Overall, effects of chemicals from two different groups (metals and pesticides) were assessed at different levels of biological organization: from genes and biochemical biomarkers to population endpoints. Selected chemicals were: 1) the metals cadmium and zinc; 2) the insecticide dimethoate, the herbicide atrazine and the fungicide carbendazim. At the gene and sub-cellular level, the effects of time and dosage were also adressed. Traditional ecotoxicological tests - survival, reproduction and avoidance behavior - indicated that pesticides were more toxic than metals. Avoidance behaviour is extremely important from an ecological point of view, but not recommended to use for risk assessment purposes. The oxidative stress related experiment showed that metals induced significant effects on several antioxidant enzyme activities and substrate levels, as well as oxidative damage on the membrane cells. To increase the potential of our molecular tool to assess transcriptional responses, the existing cDNA library was enriched with metal and pesticide responding genes, using Suppression Subtractive Hybridization (SSH). With the sequencing information obtained, an improved Agilent custom oligonucleotide microarray was developed and an EST database, including all existing molecular data on E. albidus, was made publicly available as an interactive tool to access information. With this microarray tool, most interesting and novel information on the mechanisms of chemical toxicity was obtained, with the identification of common and specific key pathways affected by each compound. The obtained results allowed the identification of mechanisms of action for the tested compounds in E. albidus, some of which are in line with the ones known for mammals, suggesting across species conserved modes of action and underlining the usefulness of this soil invertebrate as a model species. In general, biochemical and molecular responses were influenced by time of exposure and chemical dosage and these allowed to see the evolution of events. Cellular energy allocation results confirmed the gene expression evidences of an increased energetic expenditure, which can partially explain the decrease on the reproductive output, verified at a later stage. Correlations found throughout this thesis between effects at the different levels of biological organization have further improved our knowledge on the toxicity of metals and pesticides in this species.
Resumo:
Vitis vinifera L., the most widely cultivated fruit crop in the world, was the starting point for the development of this PhD thesis. This subject was exploited following on two actual trends: i) the development of rapid, simple, and high sensitive methodologies with minimal sample handling; and ii) the valuation of natural products as a source of compounds with potential health benefits. The target group of compounds under study were the volatile terpenoids (mono and sesquiterpenoids) and C13 norisoprenoids, since they may present biological impact, either from the sensorial point of view, as regards to the wine aroma, or by the beneficial properties for the human health. Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, a rapid method, was based on the headspace solid-phase microextraction combined with gas chromatography-quadrupole mass spectrometry operating at selected ion monitoring mode (HS-SPME/GC-qMS-SIM), using GC conditions that allowed obtaining a C13 norisoprenoid volatile signature. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. The second methodology, used as reference method, was based on the HS-SPME/GC-qMS-SIM, allowing the GC conditions for an adequate chromatographic resolution of wine components. For quantification purposes, external calibration curves were constructed with β-ionone, with regression coefficient (r2) of 0.9968 (RSD 12.51 %) and 0.9940 (RSD of 1.08 %) for the rapid method and for the reference method, respectively. Low detection limits (1.57 and 1.10 μg L-1) were observed. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158-1529 L-1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42-39.45 μg L-1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). A rapid methodology for the establishment of the varietal volatile profile of Vitis vinifera L. cv. 'Fernão-Pires' (FP) white wines by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GCxGC-TOFMS) was developed. Monovarietal wines from different harvests, Appellations, and producers were analysed. The study was focused on the volatiles that seem to be significant to the varietal character, such as mono and sesquiterpenic compounds, and C13 norisoprenoids. Two-dimensional chromatographic spaces containing the varietal compounds using the m/z fragments 93, 121, 161, 175 and 204 were established as follows: 1tR = 255-575 s, 2tR = 0,424-1,840 s, for monoterpenoids, 1tR = 555-685 s, 2tR = 0,528-0,856 s, for C13 norisoprenoids, and 1tR = 695-950 s, 2tR = 0,520-0,960 s, for sesquiterpenic compounds. For the three chemical groups under study, from a total of 170 compounds, 45 were determined in all wines, allowing defining the "varietal volatile profile" of FP wine. Among these compounds, 15 were detected for the first time in FP wines. This study proposes a HS-SPME/GCxGC-TOFMS based methodology combined with classification-reference sample to be used for rapid assessment of varietal volatile profile of wines. This approach is very useful to eliminate the majority of the non-terpenic and non-C13 norisoprenic compounds, allowing the definition of a two-dimensional chromatographic space containing these compounds, simplifying the data compared to the original data, and reducing the time of analysis. The presence of sesquiterpenic compounds in Vitis vinifera L. related products, to which are assigned several biological properties, prompted us to investigate the antioxidant, antiproliferative and hepatoprotective activities of some sesquiterpenic compounds. Firstly, the antiradical capacity of trans,trans-farnesol, cis-nerolidol, α-humulene and guaiazulene was evaluated using chemical (DPPH• and hydroxyl radicals) and biological (Caco-2 cells) models. Guaiazulene (IC50= 0.73 mM) was the sesquiterpene with higher scavenger capacity against DPPH•, while trans,trans-farnesol (IC50= 1.81 mM) and cis-nerolidol (IC50= 1.48 mM) were more active towards hydroxyl radicals. All compounds, with the exception of α-humulene, at non-cytotoxic levels (≤ 1 mM), were able to protect Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide. The activity of the compounds under study was also evaluated as antiproliferative agents. Guaiazulene and cis-nerolidol were able to more effectively arrest the cell cycle in the S-phase than trans,trans-farnesol and α-humulene, being the last almost inactive. The relative hepatoprotection effect of fifteen sesquiterpenic compounds, presenting different chemical structures and commonly found in plants and plant-derived foods and beverages, was assessed. Endogenous lipid peroxidation and induced lipid peroxidation with tert-butyl hydroperoxide were evaluated in liver homogenates from Wistar rats. With the exception of α-humulene, all the sesquiterpenic compounds under study (1 mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The developed 3D-QSAR models, relating the hepatoprotection activity with molecular properties, showed good fit (R2LOO > 0.819) with good prediction power (Q2 > 0.950 and SDEP < 2%) for both models. A network of effects associated with structural and chemical features of sesquiterpenic compounds such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds. In conclusion, this study allowed the development of rapid and in-depth methods for the assessment of varietal volatile compounds that might have a positive impact on sensorial and health attributes related to Vitis vinifera L. These approaches can be extended to the analysis of other related food matrices, including grapes and musts, among others. In addition, the results of in vitro assays open a perspective for the promising use of the sesquiterpenic compounds, with similar chemical structures such as those studied in the present work, as antioxidants, hepatoprotective and antiproliferative agents, which meets the current challenges related to diseases of modern civilization.
Resumo:
The performance of real-time networks is under continuous improvement as a result of several trends in the digital world. However, these tendencies not only cause improvements, but also exacerbates a series of unideal aspects of real-time networks such as communication latency, jitter of the latency and packet drop rate. This Thesis focuses on the communication errors that appear on such realtime networks, from the point-of-view of automatic control. Specifically, it investigates the effects of packet drops in automatic control over fieldbuses, as well as the architectures and optimal techniques for their compensation. Firstly, a new approach to address the problems that rise in virtue of such packet drops, is proposed. This novel approach is based on the simultaneous transmission of several values in a single message. Such messages can be from sensor to controller, in which case they are comprised of several past sensor readings, or from controller to actuator in which case they are comprised of estimates of several future control values. A series of tests reveal the advantages of this approach. The above-explained approach is then expanded as to accommodate the techniques of contemporary optimal control. However, unlike the aforementioned approach, that deliberately does not send certain messages in order to make a more efficient use of network resources; in the second case, the techniques are used to reduce the effects of packet losses. After these two approaches that are based on data aggregation, it is also studied the optimal control in packet dropping fieldbuses, using generalized actuator output functions. This study ends with the development of a new optimal controller, as well as the function, among the generalized functions that dictate the actuator’s behaviour in the absence of a new control message, that leads to the optimal performance. The Thesis also presents a different line of research, related with the output oscillations that take place as a consequence of the use of classic co-design techniques of networked control. The proposed algorithm has the goal of allowing the execution of such classical co-design algorithms without causing an output oscillation that increases the value of the cost function. Such increases may, under certain circumstances, negate the advantages of the application of the classical co-design techniques. A yet another line of research, investigated algorithms, more efficient than contemporary ones, to generate task execution sequences that guarantee that at least a given number of activated jobs will be executed out of every set composed by a predetermined number of contiguous activations. This algorithm may, in the future, be applied to the generation of message transmission patterns in the above-mentioned techniques for the efficient use of network resources. The proposed task generation algorithm is better than its predecessors in the sense that it is capable of scheduling systems that cannot be scheduled by its predecessor algorithms. The Thesis also presents a mechanism that allows to perform multi-path routing in wireless sensor networks, while ensuring that no value will be counted in duplicate. Thereby, this technique improves the performance of wireless sensor networks, rendering them more suitable for control applications. As mentioned before, this Thesis is centered around techniques for the improvement of performance of distributed control systems in which several elements are connected through a fieldbus that may be subject to packet drops. The first three approaches are directly related to this topic, with the first two approaching the problem from an architectural standpoint, whereas the third one does so from more theoretical grounds. The fourth approach ensures that the approaches to this and similar problems that can be found in the literature that try to achieve goals similar to objectives of this Thesis, can do so without causing other problems that may invalidate the solutions in question. Then, the thesis presents an approach to the problem dealt with in it, which is centered in the efficient generation of the transmission patterns that are used in the aforementioned approaches.