6 resultados para Parameter-estimation
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A análise das séries temporais de valores inteiros tornou-se, nos últimos anos, uma área de investigação importante, não só devido à sua aplicação a dados de contagem provenientes de diversos campos da ciência, mas também pelo facto de ser uma área pouco explorada, em contraste com a análise séries temporais de valores contínuos. Uma classe que tem obtido especial relevo é a dos modelos baseados no operador binomial thinning, da qual se destaca o modelo auto-regressivo de valores inteiros de ordem p. Esta classe é muito vasta, pelo que este trabalho tem como objectivo dar um contributo para a análise estatística de processos de contagem que lhe pertencem. Esta análise é realizada do ponto de vista da predição de acontecimentos, aos quais estão associados mecanismos de alarme, e também da introdução de novos modelos que se baseiam no referido operador. Em muitos fenómenos descritos por processos estocásticos a implementação de um sistema de alarmes pode ser fundamental para prever a ocorrência de um acontecimento futuro. Neste trabalho abordam-se, nas perspectivas clássica e bayesiana, os sistemas de alarme óptimos para processos de contagem, cujos parâmetros dependem de covariáveis de interesse e que variam no tempo, mais concretamente para o modelo auto-regressivo de valores inteiros não negativos com coeficientes estocásticos, DSINAR(1). A introdução de novos modelos que pertencem à classe dos modelos baseados no operador binomial thinning é feita quando se propõem os modelos PINAR(1)T e o modelo SETINAR(2;1). O modelo PINAR(1)T tem estrutura periódica, cujas inovações são uma sucessão periódica de variáveis aleatórias independentes com distribuição de Poisson, o qual foi estudado com detalhe ao nível das suas propriedades probabilísticas, métodos de estimação e previsão. O modelo SETINAR(2;1) é um processo auto-regressivo de valores inteiros, definido por limiares auto-induzidos e cujas inovações formam uma sucessão de variáveis independentes e identicamente distribuídas com distribuição de Poisson. Para este modelo estudam-se as suas propriedades probabilísticas e métodos para estimar os seus parâmetros. Para cada modelo introduzido, foram realizados estudos de simulação para comparar os métodos de estimação que foram usados.
Resumo:
A modelação e análise de séries temporais de valores inteiros têm sido alvo de grande investigação e desenvolvimento nos últimos anos, com aplicações várias em diversas áreas da ciência. Nesta tese a atenção centrar-se-á no estudo na classe de modelos basedos no operador thinning binomial. Tendo como base o operador thinning binomial, esta tese focou-se na construção e estudo de modelos SETINAR(2; p(1); p(2)) e PSETINAR(2; 1; 1)T , modelos autorregressivos de valores inteiros com limiares autoinduzidos e dois regimes, admitindo que as inovações formam uma sucessão de variáveis independentes com distribuição de Poisson. Relativamente ao primeiro modelo analisado, o modelo SETINAR(2; p(1); p(2)), além do estudo das suas propriedades probabilísticas e de métodos, clássicos e bayesianos, para estimar os parâmetros, analisou-se a questão da seleção das ordens, no caso de elas serem desconhecidas. Com este objetivo consideraram-se algoritmos de Monte Carlo via cadeias de Markov, em particular o algoritmo Reversible Jump, abordando-se também o problema da seleção de modelos, usando metodologias clássica e bayesiana. Complementou-se a análise através de um estudo de simulação e uma aplicação a dois conjuntos de dados reais. O modelo PSETINAR(2; 1; 1)T proposto, é também um modelo autorregressivo com limiares autoinduzidos e dois regimes, de ordem unitária em cada um deles, mas apresentando uma estrutura periódica. Estudaram-se as suas propriedades probabilísticas, analisaram-se os problemas de inferência e predição de futuras observações e realizaram-se estudos de simulação.
Resumo:
The Asymmetric Power Arch representation for the volatility was introduced by Ding et al.(1993) in order to account for asymmetric responses in the volatility in the analysis of continuous-valued financial time series like, for instance, the log-return series of foreign exchange rates, stock indices or share prices. As reported by Brannas and Quoreshi (2010), asymmetric responses in volatility are also observed in time series of counts such as the number of intra-day transactions in stocks. In this work, an asymmetric power autoregressive conditional Poisson model is introduced for the analysis of time series of counts exhibiting asymmetric overdispersion. Basic probabilistic and statistical properties are summarized and parameter estimation is discussed. A simulation study is presented to illustrate the proposed model. Finally, an empirical application to a set of data concerning the daily number of stock transactions is also presented to attest for its practical applicability in data analysis.
Resumo:
This work presents a periodic state space model to model monthly temperature data. Additionally, some issues are discussed, as the parameter estimation or the Kalman filter recursions adapted to a periodic model. This framework is applied to monthly long-term temperature time series of Lisbon.
Resumo:
We introduce a new class of integer-valued self-exciting threshold models, which is based on the binomial autoregressive model of order one as introduced by McKenzie (Water Resour Bull 21:645–650, 1985. doi:10.1111/j.1752-1688.1985. tb05379.x). Basic probabilistic and statistical properties of this class of models are discussed. Moreover, parameter estimation and forecasting are addressed. Finally, the performance of these models is illustrated through a simulation study and an empirical application to a set of measle cases in Germany.
Resumo:
As técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.