4 resultados para Oxinitretos de zircónio
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
O presente trabalho incidiu sobre uma família de eletrólitos sólidos cerâmicos à base de óxido de zircónio, incluindo ainda óxido de magnésio como dopante, normalmente designados de Mg-PSZ (zircónia parcialmente estabilizada com magnésia). Dependendo da composição e condições de processamento (perfil de sinterização) estes materiais podem exibir interessantes combinações de propriedades mecânicas, térmicas e elétricas que permitem a sua utilização no fabrico de sensores de oxigénio para metais fundidos. O uso de sensores é hoje essencial numa lógica de controlo de processo e eficiência energética. No sentido de tentar compreender como influenciar estas propriedades, exploraram-se diversos níveis de dopante (de 2,5 até 10 mol%, com acréscimos de 2,5 mol% de MgO), diversas velocidades de arrefecimento (2, 3 e 5 °C.min-1) a partir de uma condição igual de patamar de sinterização (1700 °C, 3 horas), e ainda alguns ciclos de sinterização mais complexos, com patamares intermédios inseridos no processo de arrefecimento, com o objetivo de tentar alterar os processos de nucleação e crescimento de fases. Na realidade, as transformações de fases a que este tipo de materiais se encontra sujeito (cúbica tetragonal monoclínica, para temperaturas decrescentes), possuem diferentes velocidades características (uma é difusiva a outra displaciva), permitindo este tipo de condicionamento. Os materiais obtidos foram alvo de caracterização estrutural e microestrutural, complementada por um conjunto de outras técnicas de caracterização física como a espectroscopia de impedância, dilatometria e dureza. Os resultados obtidos confirmam a complexidade das relações entre processamento e comportamento mas permitiram identificar condições de potencial interesse prático para as aplicações em vista.
Resumo:
The synthesis and optimization of two Li-ion solid electrolytes were studied in this work. Different combinations of precursors were used to prepare La0.5Li0.5TiO3 via mechanosynthesis. Despite the ability to form a perovskite phase by the mechanochemical reaction it was not possible to obtain a pure La0.5Li0.5TiO3 phase by this process. Of all the seven combinations of precursors and conditions tested, the one where La2O3, Li2CO3 and TiO2 were milled for 480min (LaOLiCO-480) showed the best results, with trace impurity phases still being observed. The main impurity phase was that of La2O3 after mechanosynthesis (22.84%) and Li2TiO3 after calcination (4.20%). Two different sol-gel methods were used to substitute boron on the Zr-site of Li1+xZr2-xBx(PO4)3 or the P-site of Li1+6xZr2(P1-xBxO4)3, with the doping being achieved on the Zr-site using a method adapted from Alamo et al (1989). The results show that the Zr-site is the preferential mechanism for B doping of LiZr2(PO4)3 and not the P-site. Rietveld refinement of the unit-cell parameters was performed and it was verified by consideration of Vegard’s law that it is possible to obtain phase purity up to x = 0.05. This corresponds with the phases present in the XRD data, that showed the additional presence of the low temperature (monoclinic) phase for the powder sintered at 1200ºC for 12h of compositions with x ≥ 0.075. The compositions inside the solid solution undergo the phase transition from triclinic (PDF#01-074-2562) to rhombohedral (PDF#01-070-6734) when heating from 25 to 100ºC, as reported in the literature for the base composition. Despite several efforts, it was not possible to obtain dense pellets and with physical integrity after sintering, requiring further work in order to obtain dense pellets for the electrochemical characterisation of Li Zr2(PO4)3 and Li1.05Zr1.95B0.05(PO4)3.
Resumo:
The strong progress evidenced in photonic and optoelectronic areas, accompanied by an exponential development in the nanoscience and nanotechnology, gave rise to an increasing demand for efficient luminescent materials with more and more exigent characteristics. In this field, wide band gap hosts doped with lanthanide ions represent a class of luminescent materials with a strong technological importance. Within wide band gap material, zirconia owns a combination of physical and chemical properties that potentiate it as an excellent host for the aforementioned ions, envisaging its use in different areas, including in lighting and optical sensors applications, such as pressure sensors and biosensors. Following the demand for outstanding luminescent materials, there is also a request for fast, economic and an easy scale-up process for their production. Regarding these demands, laser floating zone, solution combustion synthesis and pulsed laser ablation in liquid techniques are explored in this thesis for the production of single crystals, nanopowders and nanoparticles of lanthanides doped zirconia based hosts. Simultaneously, a detailed study of the morphological, structural and optical properties of the produced materials is made. The luminescent characteristics of zirconia and yttria stabilized zirconia (YSZ) doped with different lanthanide ions (Ce3+ (4f1), Pr3+ (4f2), Sm3+ (4f5), Eu3+ (4f6), Tb3+ (4f8), Dy3+ (4f9), Er3+ (4f11), Tm3+ (4f12), Yb3+ (4f13)) and co-doped with Er3+,Yb3+ and Tm3+,Yb3+ are analysed. Besides the Stokes luminescence, the anti- Stokes emission upon infrared excitation (upconversion and black body radiation) is also analysed and discussed. The comparison of the luminescence characteristics in materials with different dimensions allowed to analyse the effect of size in the luminescent properties of the dopant lanthanide ions. The potentialities of application of the produced luminescent materials in solid state light, biosensors and pressure sensors are explored taking into account their studied characteristics.
Resumo:
The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.