2 resultados para Non-gaussian Random Functions
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Neste trabalho é estudado o modelo de Kuramoto num grafo completo, em redes scale-free com uma distribuição de ligações P(q) ~ q-Y e na presença de campos aleatórios com magnitude constante e gaussiana. Para tal, foi considerado o método Ott-Antonsen e uma aproximação "annealed network". Num grafo completo, na presença de campos aleatórios gaussianos, e em redes scale-free com 2 < y < 5 na presença de ambos os campos aleatórios referidos, foram encontradas transições de fase contínuas. Considerando a presença de campos aleatórios com magnitude constante num grafo completo e em redes scale-free com y > 5, encontraram-se transições de fase contínua (h < √2) e descontínua (h > √2). Para uma rede SF com y = 3, foi observada uma transição de fase de ordem infinita. Os resultados do modelo de Kuramoto num grafo completo e na presença de campos aleatórios com magnitude constante foram comparados aos de simulações, tendo-se verificado uma boa concordância. Verifica-se que, independentemente da topologia de rede, a constante de acoplamento crítico aumenta com a magnitude do campo considerado. Na topologia de rede scale-free, concluiu-se que o valor do acoplamento crítico diminui à medida que valor de y diminui e que o grau de sincronização aumenta com o aumento do número médio das ligações na rede. A presença de campos aleatórios com magnitude gaussiana num grafo completo e numa rede scale-free com y > 2 não destrói a transição de fase contínua e não altera o comportamento crítico do modelo de Kuramoto.
Resumo:
Given a Lipschitz continuous multifunction $F$ on ${\mathbb{R}}^{n}$, we construct a probability measure on the set of all solutions to the Cauchy problem $\dot x\in F(x)$ with $x(0)=0$. With probability one, the derivatives of these random solutions take values within the set $ext F(x)$ of extreme points for a.e.~time $t$. This provides an alternative approach in the analysis of solutions to differential inclusions with non-convex right hand side.