13 resultados para MAT

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a previous paper [M. Robbiano, E.A. Martins, and I. Gutman, Extending a theorem by Fiedler and applications to graph energy, MATCH Commun. Math. Comput. Chem. 64 (2010), pp. 145-156], a lemma by Fiedler was used to obtain eigenspaces of graphs, and applied to graph energy. In this article Fiedler's lemma is generalized and this generalization is applied to graph spectra and graph energy. © 2011 Taylor & Francis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muitos dos problemas de otimização em grafos reduzem-se à determinação de um subconjunto de vértices de cardinalidade máxima que induza um subgrafo k-regular. Uma vez que a determinação da ordem de um subgrafo induzido k-regular de maior ordem é, em geral, um problema NP-difícil, são deduzidos novos majorantes, a determinar em tempo polinomial, que em muitos casos constituam boas aproximações das respetivas soluções ótimas. Introduzem-se majorantes espetrais usando uma abordagem baseada em técnicas de programação convexa e estabelecem-se condições necessárias e suficientes para que sejam atingidos. Adicionalmente, introduzem-se majorantes baseados no espetro das matrizes de adjacência, laplaciana e laplaciana sem sinal. É ainda apresentado um algoritmo não polinomial para a determinação de umsubconjunto de vértices de umgrafo que induz umsubgrafo k-regular de ordem máxima para uma classe particular de grafos. Finalmente, faz-se um estudo computacional comparativo com vários majorantes e apresentam-se algumas conclusões.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis focuses on the application of optimal alarm systems to non linear time series models. The most common classes of models in the analysis of real-valued and integer-valued time series are described. The construction of optimal alarm systems is covered and its applications explored. Considering models with conditional heteroscedasticity, particular attention is given to the Fractionally Integrated Asymmetric Power ARCH, FIAPARCH(p; d; q) model and an optimal alarm system is implemented, following both classical and Bayesian methodologies. Taking into consideration the particular characteristics of the APARCH(p; q) representation for financial time series, the introduction of a possible counterpart for modelling time series of counts is proposed: the INteger-valued Asymmetric Power ARCH, INAPARCH(p; q). The probabilistic properties of the INAPARCH(1; 1) model are comprehensively studied, the conditional maximum likelihood (ML) estimation method is applied and the asymptotic properties of the conditional ML estimator are obtained. The final part of the work consists on the implementation of an optimal alarm system to the INAPARCH(1; 1) model. An application is presented to real data series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An upper bound for the sum of the squares of the entries of the principal eigenvector corresponding to a vertex subset inducing a k-regular subgraph is introduced and applied to the determination of an upper bound on the order of such induced subgraphs. Furthermore, for some connected graphs we establish a lower bound for the sum of squares of the entries of the principal eigenvector corresponding to the vertices of an independent set. Moreover, a spectral characterization of families of split graphs, involving its index and the entries of the principal eigenvector corresponding to the vertices of the maximum independent set is given. In particular, the complete split graph case is highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Taking a Fiedler’s result on the spectrum of a matrix formed from two symmetric matrices as a motivation, a more general result is deduced and applied to the determination of adjacency and Laplacian spectra of graphs obtained by a generalized join graph operation on families of graphs (regular in the case of adjacency spectra and arbitrary in the case of Laplacian spectra). Some additional consequences are explored, namely regarding the largest eigenvalue and algebraic connectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let G be a finite graph with an eigenvalue μ of multiplicity m. A set X of m vertices in G is called a star set for μ in G if μ is not an eigenvalue of the star complement G\X which is the subgraph of G induced by vertices not in X. A vertex subset of a graph is (k ,t)-regular if it induces a k -regular subgraph and every vertex not in the subset has t neighbors in it. We investigate the graphs having a (k,t)-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spectral graph theory a graph with least eigenvalue 2 is exceptional if it is connected, has least eigenvalue greater than or equal to 2, and it is not a generalized line graph. A ðk; tÞ-regular set S of a graph is a vertex subset, inducing a k-regular subgraph such that every vertex not in S has t neighbors in S. We present a recursive construction of all regular exceptional graphs as successive extensions by regular sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let p(G)p(G) and q(G)q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m_L±(G)(1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that mL±(G)(1) is bounded below by p(G)−q(G). Let r(G) be the number of internal vertices of G. If r(G)=q(G), following a unified approach we prove that mL±(G)(1)=p(G)−q(G). If r(G)>q(G) then we determine the equality mL±(G)(1)=p(G)−q(G)+mN±(1), where mN±(1) denotes the multiplicity of 1 as eigenvalue of a matrix N±. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are non-quasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, relevant results about the determination of (k,t)-regular sets, using the main eigenvalues of a graph, are reviewed and some results about the determination of (0,2)-regular sets are introduced. An algorithm for that purpose is also described. As an illustration, this algorithm is applied to the determination of maximum matchings in arbitrary graphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perturbations of asymptotically Anti-de-Sitter (AdS) spacetimes are often considered by imposing field vanishing boundary conditions (BCs) at the AdS boundary. Such BCs, of Dirichlet-type, imply a vanishing energy flux at the boundary, but the converse is, generically, not true. Regarding AdS as a gravitational box, we consider vanishing energy flux (VEF) BCs as a more fundamental physical requirement and we show that these BCs can lead to a new branch of modes. As a concrete example, we consider Maxwell perturbations on Kerr-AdS black holes in the Teukolsky formalism, but our formulation applies also for other spin fields. Imposing VEF BCs, we find a set of two Robin BCs, even for Schwarzschild-AdS black holes. The Robin BCs on the Teukolsky variables can be used to study quasinormal modes, superradiant instabilities and vector clouds. As a first application, we consider here the quasinormal modes of Schwarzschild-AdS black holes. We find that one of the Robin BCs yields the quasinormal spectrum reported in the literature, while the other one unveils a new branch for the quasinormal spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Asymmetric Power Arch representation for the volatility was introduced by Ding et al.(1993) in order to account for asymmetric responses in the volatility in the analysis of continuous-valued financial time series like, for instance, the log-return series of foreign exchange rates, stock indices or share prices. As reported by Brannas and Quoreshi (2010), asymmetric responses in volatility are also observed in time series of counts such as the number of intra-day transactions in stocks. In this work, an asymmetric power autoregressive conditional Poisson model is introduced for the analysis of time series of counts exhibiting asymmetric overdispersion. Basic probabilistic and statistical properties are summarized and parameter estimation is discussed. A simulation study is presented to illustrate the proposed model. Finally, an empirical application to a set of data concerning the daily number of stock transactions is also presented to attest for its practical applicability in data analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clustering and Disjoint Principal Component Analysis (CDP CA) is a constrained principal component analysis recently proposed for clustering of objects and partitioning of variables, simultaneously, which we have implemented in R language. In this paper, we deal in detail with the alternating least-squares algorithm for CDPCA and highlight its algebraic features for constructing both interpretable principal components and clusters of objects. Two applications are given to illustrate the capabilities of this new methodology.