3 resultados para HUMAN-DISEASE
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Estudos recentes estabelecem uma ligação entre erros na tradução do mRNA e cancro, envelhecimento e neurodegeneração. RNAs de transferência mutantes que introduzem aminoácidos em locais errados nas proteínas aumentam a produção de espécies reactivas de oxigénio e a expressão de genes que regulam autofagia, ribofagia, degradação de proteínas não-funcionais e protecção contra o stress oxidativo. Erros na tradução do mRNA estão portanto relacionados com stress proteotóxico. Sabe-se agora que o mecanismo de toxicidade do crómio está associado à diminuição da fidelidade de tradução e à agregação de proteínas com malformações que destabilizam a sua estrutura terciária. Desta forma, é possível que os efeitos do stress ambiental ao nível da degeneração celular possam estar relacionados com a alteração da integridade da maquinaria da tradução. Neste estudo procedeu-se a uma avaliação alargada do impacto do stress ambiental na fidelidade da síntese de proteínas, utilizando S. cerevisiae como um sistema modelo. Para isso recorreu-se a repórteres policistrónicos de luciferase que permitiram quantificar especificamente a supressão de codões de terminação e o erro na leitura do codão AUG em células exposta a concentações não letais de metais pesados, etanol, cafeína e H2O2. Os resultados sugerem que a maquinaria de tradução é na generalidade muito resistente ao stress ambiental, devido a uma conjugação de mecanismos de homeostase que muito eficientemente antagonizam o impacto negativo dos erros de tradução. A nossa abordagem quantitativa permitiu-nos a identificar genes regulados por uma resposta programada ao stress ambiental que são também essenciais para mitigar a ocorrência de erros de tradução, nomeadamente, HSP12, HSP104 e RPN4. A exposição prolongada ao stress ambiental conduz à saturação dos mecanismos de homeostase, contribuindo para a acumulação de proteínas contendo erros de tradução e diminuindo a disponibilidade de proteínas funcionais directamente envolvidas na manutenção da fidelidade de tradução e integridade celular. Ao contrário de outras Hsps, a Hsp12p adopta normalmente uma localização membranar em condições de stress, que pode modular a fluidez e estabilidade membranar, sugerindo que a membrana plasmática é um alvo preferencial da perda de fidelidade da tradução. Para melhor compreender as respostas celulares aos erros de tradução, células contendo deleções em genes codificadores das Hsps foram transformadas com tRNAs mutantes que introduzem alterações no proteoma. Os nossos resultados demonstram que para além da resposta geral ao stress, estes tRNAs induzem alterações a nível do metabolismo celular e um aumento de aminoacilação com Metionina em vários tRNAs, sugerindo um mecanismo de protecção contra espécies reactivas de oxigénio. Em conclusão, este estudo sugere um papel para os erros de tradução na gestão de recursos energéticos e na adaptação das células a ambientes desfavoráveis.
Resumo:
A Doença de Alzheimer (AD) é a maior doença neurodegenerativa a nível mundial, e a principal causa de demência na população idosa. O processamento da proteína precursora de amilóide (APP) pelas β- e g- secretases origina o peptídeo Aβ, que agrega em oligómeros neurotóxicos e em placas senis. Estes são eventos-chave na patogénese da DA que levam à rutura da neurotransmissão sináptica, morte neuronal e inflamação neuronal do hipocampo e córtex cerebral, causando perda de memória disfunção cognitiva geral. Apesar dos grandes avanços no conhecimento do papel do processamento da APP na DA, a sua função fisiológica ainda não foi totalmente elucidada. Os mapas de interações proteína-proteína (PPI) humanos têm desempenhado um papel importante na investigação biomédica, em particular no estudo de vias de sinalização e de doenças humanas. O método dois-híbrido em levedura (YTH) consiste numa plataforma para a produção rápida de redes de PPI em larga-escala. Neste trabalho foram realizados vários rastreios YTH com o objetivo de identificar proteínas específicas de cérebro humano que interagissem com a APP, ou com o seu domínio intracelular (AICD), tanto o tipo selvagem como com os mutantes Y687F, que mimetizam o estado desfosforilado do resíduo Tyr-687. De facto, a endocitose da APP e a produção de Aβ estão dependentes do estado de fosforilação da Tyr-687. Os rastreios YTH permitiram assim obter de redes proteínas que interagem com a APP, utilizando como “isco” a APP, APPY687F e AICDY687F. Os clones positivos foram isolados e identificados através de sequenciação do cDNA. A maior parte dos clones identificados, 118, correspondia a sequências que codificam para proteínas conhecidas, resultando em 31 proteínas distintas. A análise de proteómica funcional das proteínas identificadas neste estudo e em dois projetos anteriores (AICDY687E, que mimetiza a fosforilação, e AICD tipo selvagem), permitiram avaliar a relevância da fosforilação da Tyr-687. Três clones provenientes do rastreio YTH com a APPY687F foram identificados como um novo transcrito da proteína Fe65, resultante de splicing alternativo, a Fe65E3a (GenBank Accession: EF103274), que codifica para a isoforma p60Fe65. A p60Fe65 está enriquecida no cérebro e os seus níveis aumentam durante a diferenciação neuronal de células PC12, evidenciando o potencial papel que poderá desempenhar na patologia da DA. A RanBP9 é uma proteína nuclear e citoplasmática envolvida em diversas vias de sinalização celulares. Neste trabalho caracterizou-se a nova interação entre a RanBP9 e o AICD, que pode ser regulada pela fosforilação da Tyr-687. Adicionalmente, foi identificada uma nova interação entre a RanBP9 e a acetiltransferase de histonas Tip60. Demonstrou-se ainda que a RanBP9 tem um efeito de regulação inibitório na transcrição mediada por AICD, através da interação com a Tip60, afastando o AICD dos locais de transcrição ativos. O estudo do interactoma da APP/AICD, modelado pela fosforilação da Tyr-687, revela que a APP poderá estar envolvida em novas vias celulares, contribuindo não só para o conhecimento do papel fisiológico da APP, como também auxilia a revelar as vias que levam à agregação de Aβ e neurodegeneração. A potencial relevância deste trabalho relaciona-se com a descoberta de algumas interações proteicas/vias de sinalização que podem que podem ser relevantes para o desenvolvimento de novas estratégias terapêuticas na DA.
Resumo:
This thesis reports the application of metabolomics to human tissues and biofluids (blood plasma and urine) to unveil the metabolic signature of primary lung cancer. In Chapter 1, a brief introduction on lung cancer epidemiology and pathogenesis, together with a review of the main metabolic dysregulations known to be associated with cancer, is presented. The metabolomics approach is also described, addressing the analytical and statistical methods employed, as well as the current state of the art on its application to clinical lung cancer studies. Chapter 2 provides the experimental details of this work, in regard to the subjects enrolled, sample collection and analysis, and data processing. In Chapter 3, the metabolic characterization of intact lung tissues (from 56 patients) by proton High Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is described. After careful assessment of acquisition conditions and thorough spectral assignment (over 50 metabolites identified), the metabolic profiles of tumour and adjacent control tissues were compared through multivariate analysis. The two tissue classes could be discriminated with 97% accuracy, with 13 metabolites significantly accounting for this discrimination: glucose and acetate (depleted in tumours), together with lactate, alanine, glutamate, GSH, taurine, creatine, phosphocholine, glycerophosphocholine, phosphoethanolamine, uracil nucleotides and peptides (increased in tumours). Some of these variations corroborated typical features of cancer metabolism (e.g., upregulated glycolysis and glutaminolysis), while others suggested less known pathways (e.g., antioxidant protection, protein degradation) to play important roles. Another major and novel finding described in this chapter was the dependence of this metabolic signature on tumour histological subtype. While main alterations in adenocarcinomas (AdC) related to phospholipid and protein metabolisms, squamous cell carcinomas (SqCC) were found to have stronger glycolytic and glutaminolytic profiles, making it possible to build a valid classification model to discriminate these two subtypes. Chapter 4 reports the NMR metabolomic study of blood plasma from over 100 patients and near 100 healthy controls, the multivariate model built having afforded a classification rate of 87%. The two groups were found to differ significantly in the levels of lactate, pyruvate, acetoacetate, LDL+VLDL lipoproteins and glycoproteins (increased in patients), together with glutamine, histidine, valine, methanol, HDL lipoproteins and two unassigned compounds (decreased in patients). Interestingly, these variations were detected from initial disease stages and the magnitude of some of them depended on the histological type, although not allowing AdC vs. SqCC discrimination. Moreover, it is shown in this chapter that age mismatch between control and cancer groups could not be ruled out as a possible confounding factor, and exploratory external validation afforded a classification rate of 85%. The NMR profiling of urine from lung cancer patients and healthy controls is presented in Chapter 5. Compared to plasma, the classification model built with urinary profiles resulted in a superior classification rate (97%). After careful assessment of possible bias from gender, age and smoking habits, a set of 19 metabolites was proposed to be cancer-related (out of which 3 were unknowns and 6 were partially identified as N-acetylated metabolites). As for plasma, these variations were detected regardless of disease stage and showed some dependency on histological subtype, the AdC vs. SqCC model built showing modest predictive power. In addition, preliminary external validation of the urine-based classification model afforded 100% sensitivity and 90% specificity, which are exciting results in terms of potential for future clinical application. Chapter 6 describes the analysis of urine from a subset of patients by a different profiling technique, namely, Ultra-Performance Liquid Chromatography coupled to Mass Spectrometry (UPLC-MS). Although the identification of discriminant metabolites was very limited, multivariate models showed high classification rate and predictive power, thus reinforcing the value of urine in the context of lung cancer diagnosis. Finally, the main conclusions of this thesis are presented in Chapter 7, highlighting the potential of integrated metabolomics of tissues and biofluids to improve current understanding of lung cancer altered metabolism and to reveal new marker profiles with diagnostic value.