4 resultados para Georges Laplace
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
Resumo:
In this paper, by using the method of separation of variables, we obtain eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator defined via fractional Caputo derivatives. The solutions are expressed using the Mittag-Leffler function and we show some graphical representations for some parameters. A family of fundamental solutions of the corresponding fractional Dirac operator is also obtained. Particular cases are considered in both cases.
Resumo:
The energy of a graph G is the sum of the absolute values of the eigenvalues of the adjacency matrix of G. The Laplacian (respectively, the signless Laplacian) energy of G is the sum of the absolute values of the differences between the eigenvalues of the Laplacian (respectively, signless Laplacian) matrix and the arithmetic mean of the vertex degrees of the graph. In this paper, among some results which relate these energies, we point out some bounds to them using the energy of the line graph of G. Most of these bounds are valid for both energies, Laplacian and signless Laplacian. However, we present two new upper bounds on the signless Laplacian which are not upper bounds for the Laplacian energy. © 2010 Elsevier Inc. All rights reserved.
Resumo:
Introduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.