4 resultados para DSA® anodes

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the more promising possibilities for future “green” electrical energy generation is the protonic ceramic fuel cell (PCFC). PCFCs offer a low-pollution technology to generate electricity electrochemically with high efficiency. Reducing the operating temperature of solid oxide fuel cells (SOFCs) to the 500-700°C range is desirable to reduce fabrication costs and improve overall longevity. This aim can be achieved by using protonic ceramic fuel cells (PCFCs) due to their higher electrolyte conductivity at these temperatures than traditional ceramic oxide-ion conducting membranes. This thesis deals with the state of the art Ni-BaZr0.85Y0.15O3-δ cermet anodes for PCFCs. The study of PCFCs is in its initial stage and currently only a few methods have been developed to prepare suitable anodes via solid state mechanical mixing of the relevant oxides or by combustion routes using nitrate precursors. This thesis aims to highlight the disadvantages of these traditional methods of anode preparation and to, instead, offer a novel, efficient and low cost nitrate free combustion route to prepare Ni-BaZr0.85Y0.15O3-δ cermet anodes for PCFCs. A wide range of techniques mainly X-ray diffraction (XRD), scanning electron microscopy (SEM), environmental scanning electron microscopy, (ESEM) and electrochemical impedance spectroscopy (EIS) were employed in the cermet anode study. The work also offers a fundamental examination of the effect of porosity, redox cycling behaviour, involvement of proton conducting oxide phase in PCFC cermet anodes and finally progresses to study the electrochemical performance of a state of the art anode supported PCFC. The polarisation behaviour of anodes has been assessed as a function of temperature (T), water vapour (pH2O), hydrogen partial pressures (pH2) and phase purity for electrodes of comparable microstructure. The impedance spectra generally show two arcs at high frequency R2 and low frequency R3 at 600 °C, which correspond to the electrode polarisation resistance. Work shows that the R2 and R3 terms correspond to proton transport and dissociative H2 adsorption on electrode surface, respectively. The polarization resistance of the cermet anode (Rp) was shown to be significantly affected by porosity, with the PCFC cermet anode with the lowest porosity exhibiting the lowest Rp under standard operating conditions. This result highlights that porogens are not required for peak performance in PCFC anodes, a result contrary to that of their oxide-ion conducting anode counterparts. In-situ redox cycling studies demonstrate that polarisation behaviour was drastically impaired by redox cycling. In-situ measurements using an environmental scanning electron microscopy (ESEM) reveal that degradation proceeds due to volume expansion of the Ni-phase during the re-oxidation stage of redox cycling.The anode supported thin BCZY44 based protonic ceramic fuel cell, formed using a peak performing Ni-BaZr0.85Y0.15O3-δ cermet anode with no porogen, shows promising results in fuel cell testing conditions at intermediate temperatures with good durability and an overall performance that exceeds current literature data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work was focused on the analysis of transport, thermomechanical and electrochemical properties of a series of perovskite-like oxide materials and composites for potential applications as anodes of intermediate-temperature solid oxide fuel cells (SOFCs) with lanthanum gallate and silicate solid electrolytes. The primary attention was centered on A(Mn,Nb)O3-δ (A = Sr, Ca) and (La,Sr)(Mn,Ti)O3-based systems, lanthanum chromite substituted with acceptor-type and variable-valence cations, and various Ni-containing cermets. Emphasis was given to phase stability of the materials, their crystal structure, microstructure of porous electrode layers and dense ceramics, electronic conductivity, Seebeck coefficient, oxygen permeability, thermal and chemical induced expansion, and anodic overpotentials of the electrodes deposited onto (La,Sr)(Ga,Mg)O3- and La10(Si,Al)6O27- based electrolyte membranes. In selected cases, roles of oxygen diffusivity, states of the transition metal cations relevant for the electronic transport, catalytically active additives and doped ceria protective interlayers introduced in the model electrochemical cells were assessed. The correlations between transport properties of the electrode materials and electrochemical behavior of porous electrodes showed that the principal factors governing anode performance include, in particular, electronic conduction of the anode compositions and cation interdiffusion between the electrodes and solid electrolytes. The latter is critically important for the silicatebased electrolyte membranes, leading to substantially worse anode properties compared to the electrochemical cells with lanthanum gallate solid electrolyte. The results made it possible to select several anode compositions exhibiting lower area-specific electrode resistivity compared to known analogues, such as (La,Sr)(Cr,Mn)O3-δ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this PhD thesis was to provide convincing demonstration for a breakthrough concept of pyroelectrolysis at laboratory scale. One attempted to identify fundamental objections and/or the most critical constraints, to propose workable concepts for the overall process and for feasible electrodes, and to establish the main requirements on a clearer basis. The main effort was dedicated to studying suitable anode materials to be developed for large scale industrial units with molten silicate electrolyte. This concept relies on consumable anodes based on iron oxides, and a liquid Fe cathode, separated from the refractory materials by a freeze lining (solid) layer. In addition, one assessed an alternative concept of pyroelectrolysis with electron blocking membranes, and developed a prototype at small laboratory scale. The main composition of the molten electrolyte was based on a magnesium aluminosilicate composition, with minimum liquidus temperature, and with different additions of iron oxide. One studied the dynamics of devitrification of these melts, crystallization of iron oxides or other phases, and Fe2+/Fe3+ redox changes under laser zone melting, at different pulling rates. These studies were intended to provide guidelines for dissolution of raw materials (iron oxides) in the molten electrolyte, to assess compatibility with magnetite based consumable anodes, and to account for thermal gradients or insufficient thermal management in large scale cells. Several laboratory scale prototype cells were used to demonstrate the concept of pyroelectrolysis with electron blocking, and to identify the most critical issues and challenges. Operation with and without electron blocking provided useful information on transport properties of the molten electrolyte (i.e., ionic and electronic conductivities), their expected dependence on anodic and cathodic overpotentials, limitations in faradaic efficiency, and onset of side electrochemical reactions. The concept of consumable anodes was based on magnetite and derived spinel compositions, for their expected redox stability at high temperatures, even under oxidising conditions. Spinel compositions were designed for prospective gains in refractoriness and redox stability in wider ranges of conditions (T, pO2 and anodic overpotentials), without excessive penalty for electrical conductivity, thermomechanical stability or other requirements. Composition changes were also mainly based on components of the molten aluminosilicate melt, to avoid undue contamination and to minimize the dissolution rate of consumable anodes. Additional changes in composition were intended for prospective pyroelectrolysis of Fe alloys, with additions of different elements (Cr, Mn, Ni, Ti).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current project assesses potential molten alloy anodes for Solid Oxide Fuel Cells (SOFC) running on solid waste. A detailed phase diagram study was performed to locate probable anode systems. The molten metal oxide system PbO-Sb2O3 was selected as a possible molten alloy anode for this application. A detailed vapour pressure study of this system was performed. Several cells were fabricated to experimentally assess the electrochemical properties of this system. The work reveals several unexpected limiting features such as the incompatibility between the platinum and the chosen alloy. A second cell was built, this time using rhenium wires instead, preventing such reaction. However, the rhenium wire sublimes under oxidizing conditions (air) and the sealing glass and the chosen alloy system react with each other under long term use. Considering all these issues, a third cell design was conceived, surpassing some obstacles and providing some initial information regarding the electrochemical behaviour. The current project shows that many parameters need to be taken into account to ensure materials compatibility. For the PbOSb2O3 system, the high volatility of Sb2O3 was a serious limitation that can only be addressed through the application of new contact wires or sealing materials and conditions. Nonetheless, the project highlights several other potential systems that can be considered, such as Pb11Ge3O17, Pb3GeO5, Pb5Ge3O11, Bi2CuO4, Bi2PdO4, Bi12GeO20.