5 resultados para Combinatorial Algorithms
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
O desenvolvimento de sistemas computacionais é um processo complexo, com múltiplas etapas, que requer uma análise profunda do problema, levando em consideração as limitações e os requisitos aplicáveis. Tal tarefa envolve a exploração de técnicas alternativas e de algoritmos computacionais para optimizar o sistema e satisfazer os requisitos estabelecidos. Neste contexto, uma das mais importantes etapas é a análise e implementação de algoritmos computacionais. Enormes avanços tecnológicos no âmbito das FPGAs (Field-Programmable Gate Arrays) tornaram possível o desenvolvimento de sistemas de engenharia extremamente complexos. Contudo, o número de transístores disponíveis por chip está a crescer mais rapidamente do que a capacidade que temos para desenvolver sistemas que tirem proveito desse crescimento. Esta limitação já bem conhecida, antes de se revelar com FPGAs, já se verificava com ASICs (Application-Specific Integrated Circuits) e tem vindo a aumentar continuamente. O desenvolvimento de sistemas com base em FPGAs de alta capacidade envolve uma grande variedade de ferramentas, incluindo métodos para a implementação eficiente de algoritmos computacionais. Esta tese pretende proporcionar uma contribuição nesta área, tirando partido da reutilização, do aumento do nível de abstracção e de especificações algorítmicas mais automatizadas e claras. Mais especificamente, é apresentado um estudo que foi levado a cabo no sentido de obter critérios relativos à implementação em hardware de algoritmos recursivos versus iterativos. Depois de serem apresentadas algumas das estratégias para implementar recursividade em hardware mais significativas, descreve-se, em pormenor, um conjunto de algoritmos para resolver problemas de pesquisa combinatória (considerados enquanto exemplos de aplicação). Versões recursivas e iterativas destes algoritmos foram implementados e testados em FPGA. Com base nos resultados obtidos, é feita uma cuidada análise comparativa. Novas ferramentas e técnicas de investigação que foram desenvolvidas no âmbito desta tese são também discutidas e demonstradas.
Resumo:
Os problemas de visibilidade têm diversas aplicações a situações reais. Entre os mais conhecidos, e exaustivamente estudados, estão os que envolvem os conceitos de vigilância e ocultação em estruturas geométricas (problemas de vigilância e ocultação). Neste trabalho são estudados problemas de visibilidade em estruturas geométricas conhecidas como polígonos, uma vez que estes podem representar, de forma apropriada, muitos dos objectos reais e são de fácil manipulação computacional. O objectivo dos problemas de vigilância é a determinação do número mínimo de posições para a colocação de dispositivos num dado polígono, de modo a que estes dispositivos consigam “ver” a totalidade do polígono. Por outro lado, o objectivo dos problemas de ocultação é a determinação do número máximo de posições num dado polígono, de modo a que quaisquer duas posições não se consigam “ver”. Infelizmente, a maior parte dos problemas de visibilidade em polígonos são NP-difíceis, o que dá origem a duas linhas de investigação: o desenvolvimento de algoritmos que estabelecem soluções aproximadas e a determinação de soluções exactas para classes especiais de polígonos. Atendendo a estas duas linhas de investigação, o trabalho é dividido em duas partes. Na primeira parte são propostos algoritmos aproximados, baseados essencialmente em metaheurísticas e metaheurísticas híbridas, para resolver alguns problemas de visibilidade, tanto em polígonos arbitrários como ortogonais. Os problemas estudados são os seguintes: “Maximum Hidden Vertex Set problem”, “Minimum Vertex Guard Set problem”, “Minimum Vertex Floodlight Set problem” e “Minimum Vertex k-Modem Set problem”. São também desenvolvidos métodos que permitem determinar a razão de aproximação dos algoritmos propostos. Para cada problema são implementados os algoritmos apresentados e é realizado um estudo estatístico para estabelecer qual o algoritmo que obtém as melhores soluções num tempo razoável. Este estudo permite concluir que as metaheurísticas híbridas são, em geral, as melhores estratégias para resolver os problemas de visibilidade estudados. Na segunda parte desta dissertação são abordados os problemas “Minimum Vertex Guard Set”, “Maximum Hidden Set” e “Maximum Hidden Vertex Set”, onde são identificadas e estudadas algumas classes de polígonos para as quais são determinadas soluções exactas e/ou limites combinatórios.
Resumo:
Viscoelastic treatments are one of the most efficient treatments, as far as passive damping is concerned, particularly in the case of thin and light structures. In this type of treatment, part of the strain energy generated in the viscoelastic material is dissipated to the surroundings, in the form of heat. A layer of viscoelastic material is applied to a structure in an unconstrained or constrained configuration, the latter proving to be the most efficient arrangement. This is due to the fact that the relative movement of both the host and constraining layers cause the viscoelastic material to be subjected to a relatively high strain energy. There are studies, however, that claim that the partial application of the viscoelastic material is just as efficient, in terms of economic costs or any other form of treatment application costs. The application of patches of material in specific and selected areas of the structure, thus minimising the extension of damping material, results in an equally efficient treatment. Since the damping mechanism of a viscoelastic material is based on the dissipation of part of the strain energy, the efficiency of the partial treatment can be correlated to the modal strain energy of the structure. Even though the results obtained with this approach in various studies are considered very satisfactory, an optimisation procedure is deemed necessary. In order to obtain optimum solutions, however, time consuming numerical simulations are required. The optimisation process to use the minimum amount of viscoelastic material is based on an evolutionary geometry re-design and calculation of the modal damping, making this procedure computationally costly. To avert this disadvantage, this study uses adaptive layerwise finite elements and applies Genetic Algorithms in the optimisation process.
Resumo:
This thesis studies properties and applications of different generalized Appell polynomials in the framework of Clifford analysis. As an example of 3D-quasi-conformal mappings realized by generalized Appell polynomials, an analogue of the complex Joukowski transformation of order two is introduced. The consideration of a Pascal n-simplex with hypercomplex entries allows stressing the combinatorial relevance of hypercomplex Appell polynomials. The concept of totally regular variables and its relation to generalized Appell polynomials leads to the construction of new bases for the space of homogeneous holomorphic polynomials whose elements are all isomorphic to the integer powers of the complex variable. For this reason, such polynomials are called pseudo-complex powers (PCP). Different variants of them are subject of a detailed investigation. Special attention is paid to the numerical aspects of PCP. An efficient algorithm based on complex arithmetic is proposed for their implementation. In this context a brief survey on numerical methods for inverting Vandermonde matrices is presented and a modified algorithm is proposed which illustrates advantages of a special type of PCP. Finally, combinatorial applications of generalized Appell polynomials are emphasized. The explicit expression of the coefficients of a particular type of Appell polynomials and their relation to a Pascal simplex with hypercomplex entries are derived. The comparison of two types of 3D Appell polynomials leads to the detection of new trigonometric summation formulas and combinatorial identities of Riordan-Sofo type characterized by their expression in terms of central binomial coefficients.
Resumo:
Nesta tese abordam-se várias formulações e diferentes métodos para resolver o Problema da Árvore de Suporte de Custo Mínimo com Restrições de Peso (WMST – Weight-constrained Minimum Spanning Tree Problem). Este problema, com aplicações no desenho de redes de comunicações e telecomunicações, é um problema de Otimização Combinatória NP-difícil. O Problema WMST consiste em determinar, numa rede com custos e pesos associados às arestas, uma árvore de suporte de custo mínimo de tal forma que o seu peso total não exceda um dado limite especificado. Apresentam-se e comparam-se várias formulações para o problema. Uma delas é usada para desenvolver um procedimento com introdução de cortes baseado em separação e que se tornou bastante útil na obtenção de soluções para o problema. Tendo como propósito fortalecer as formulações apresentadas, introduzem-se novas classes de desigualdades válidas que foram adaptadas das conhecidas desigualdades de cobertura, desigualdades de cobertura estendida e desigualdades de cobertura levantada. As novas desigualdades incorporam a informação de dois conjuntos de soluções: o conjunto das árvores de suporte e o conjunto saco-mochila. Apresentam-se diversos algoritmos heurísticos de separação que nos permitem usar as desigualdades válidas propostas de forma eficiente. Com base na decomposição Lagrangeana, apresentam-se e comparam-se algoritmos simples, mas eficientes, que podem ser usados para calcular limites inferiores e superiores para o valor ótimo do WMST. Entre eles encontram-se dois novos algoritmos: um baseado na convexidade da função Lagrangeana e outro que faz uso da inclusão de desigualdades válidas. Com o objetivo de obter soluções aproximadas para o Problema WMST usam-se métodos heurísticos para encontrar uma solução inteira admissível. Os métodos heurísticos apresentados são baseados nas estratégias Feasibility Pump e Local Branching. Apresentam-se resultados computacionais usando todos os métodos apresentados. Os resultados mostram que os diferentes métodos apresentados são bastante eficientes para encontrar soluções para o Problema WMST.