10 resultados para Combinatorial Algorithms
em CaltechTHESIS
Resumo:
This thesis discusses various methods for learning and optimization in adaptive systems. Overall, it emphasizes the relationship between optimization, learning, and adaptive systems; and it illustrates the influence of underlying hardware upon the construction of efficient algorithms for learning and optimization. Chapter 1 provides a summary and an overview.
Chapter 2 discusses a method for using feed-forward neural networks to filter the noise out of noise-corrupted signals. The networks use back-propagation learning, but they use it in a way that qualifies as unsupervised learning. The networks adapt based only on the raw input data-there are no external teachers providing information on correct operation during training. The chapter contains an analysis of the learning and develops a simple expression that, based only on the geometry of the network, predicts performance.
Chapter 3 explains a simple model of the piriform cortex, an area in the brain involved in the processing of olfactory information. The model was used to explore the possible effect of acetylcholine on learning and on odor classification. According to the model, the piriform cortex can classify odors better when acetylcholine is present during learning but not present during recall. This is interesting since it suggests that learning and recall might be separate neurochemical modes (corresponding to whether or not acetylcholine is present). When acetylcholine is turned off at all times, even during learning, the model exhibits behavior somewhat similar to Alzheimer's disease, a disease associated with the degeneration of cells that distribute acetylcholine.
Chapters 4, 5, and 6 discuss algorithms appropriate for adaptive systems implemented entirely in analog hardware. The algorithms inject noise into the systems and correlate the noise with the outputs of the systems. This allows them to estimate gradients and to implement noisy versions of gradient descent, without having to calculate gradients explicitly. The methods require only noise generators, adders, multipliers, integrators, and differentiators; and the number of devices needed scales linearly with the number of adjustable parameters in the adaptive systems. With the exception of one global signal, the algorithms require only local information exchange.
Resumo:
Interleukin-2 is one of the lymphokines secreted by T helper type 1 cells upon activation mediated by T-cell receptor (TCR) and accessory molecules. The ability to express IL-2 is correlated with T-lineage commitment and is regulated during T cell development and differentiation. Understanding the molecular mechanism of how IL-2 gene inducibility is controlled at each transition and each differentiation process of T-cell development is to understand one aspect of T-cell development. In the present study, we first attempted to elucidate the molecular basis for the developmental changes of IL-2 gene inducibility. We showed that IL-2 gene inducibility is acquired early in immature CD4- CD8-TCR- thymocytes prior to TCR gene rearrangement. Similar to mature T cells, a complete set of transcription factors can be induced at this early stage to activate IL-2 gene expression. The progression of these cells to cortical CD4^+CD8^+TCR^(1o) cells is accompanied by the loss of IL-2 gene inducibility. We demonstrated that DNA binding activities of two transcription factors AP-1 and NF-AT are reduced in cells at this stage. Further, the loss of factor binding, especially AP-1, is attributable to the reduced ability to activate expression of three potential components of AP-1 and NF-AT, including c-Fos, FosB, and Fra-2. We next examined the interaction of transcription factors and the IL-2 promoter in vivo by using the EL4 T cell line and two non-T cell lines. We showed an all-or-none phenomenon regarding the factor-DNA interaction, i.e., in activated T cells, the IL-2 promoter is occupied by sequence-specific transcription factors when all the transcription factors are available; in resting T cells or non-T cells, no specific protein-DNA interaction is observed when only a subset of factors are present in the nuclei. Purposefully reducing a particular set of factor binding activities in stimulated T cells using pharmacological agents cyclosporin A or forskolin also abolished all interactions. The results suggest that a combinatorial and coordinated protein-DNA interaction is required for IL-2 gene activation. The thymocyte experiments clearly illustrated that multiple transcription factors are regulated during intrathymic T-cell development, and this regulation in tum controls the inducibility of the lineage-specific IL-2 gene. The in vivo study of protein-DNA interaction stressed the combinatorial action of transcription factors to stably occupy the IL-2 promoter and to initiate its transcription, and provided a molecular mechanism for changes in IL-2 gene inducibility in T cells undergoing integration of multiple environmental signals.
Resumo:
Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast–all while remaining functional.
This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of “active self-assembly” of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology’s numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules.
One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved.
One might think that because a system is Turing-complete, capable of computing “anything,” that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not “computations” in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface.
Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors “energetically incomplete” programmable behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time.
As we will demonstrate and prove, a sufficiently expressive implementation of an “active” molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the the problem, so the system is not “energetically incomplete.” But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive.
Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly.
We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self- assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics.
We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic linear polymer that grows exponentially fast via insertion. We show that monomer molecules are converted into the polymer in logarithmic time via spectrofluorimetry and gel electrophoresis experiments. We also demonstrate the division of these polymers via the addition of a single DNA complex that competes with the insertion mechanism. This shows the growth of a population of polymers in logarithmic time. We characterize the DNA insertion mechanism that we utilize in Chapter 4. We experimentally demonstrate that we can control the kinetics of this re- action over at least seven orders of magnitude, by programming the sequences of DNA that initiate the reaction.
In addition, we review co-authored work on programming molecular robots using prescriptive landscapes of DNA origami; this was the first microscopic demonstration of programming a molec- ular robot to walk on a 2-dimensional surface. We developed a snapshot method for imaging these random walking molecular robots and a CAPTCHA-like analysis method for difficult-to-interpret imaging data.
Resumo:
Storage systems are widely used and have played a crucial rule in both consumer and industrial products, for example, personal computers, data centers, and embedded systems. However, such system suffers from issues of cost, restricted-lifetime, and reliability with the emergence of new systems and devices, such as distributed storage and flash memory, respectively. Information theory, on the other hand, provides fundamental bounds and solutions to fully utilize resources such as data density, information I/O and network bandwidth. This thesis bridges these two topics, and proposes to solve challenges in data storage using a variety of coding techniques, so that storage becomes faster, more affordable, and more reliable.
We consider the system level and study the integration of RAID schemes and distributed storage. Erasure-correcting codes are the basis of the ubiquitous RAID schemes for storage systems, where disks correspond to symbols in the code and are located in a (distributed) network. Specifically, RAID schemes are based on MDS (maximum distance separable) array codes that enable optimal storage and efficient encoding and decoding algorithms. With r redundancy symbols an MDS code can sustain r erasures. For example, consider an MDS code that can correct two erasures. It is clear that when two symbols are erased, one needs to access and transmit all the remaining information to rebuild the erasures. However, an interesting and practical question is: What is the smallest fraction of information that one needs to access and transmit in order to correct a single erasure? In Part I we will show that the lower bound of 1/2 is achievable and that the result can be generalized to codes with arbitrary number of parities and optimal rebuilding.
We consider the device level and study coding and modulation techniques for emerging non-volatile memories such as flash memory. In particular, rank modulation is a novel data representation scheme proposed by Jiang et al. for multi-level flash memory cells, in which a set of n cells stores information in the permutation induced by the different charge levels of the individual cells. It eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells. In order to decrease the decoding complexity, we propose two variations of this scheme in Part II: bounded rank modulation where only small sliding windows of cells are sorted to generated permutations, and partial rank modulation where only part of the n cells are used to represent data. We study limits on the capacity of bounded rank modulation and propose encoding and decoding algorithms. We show that overlaps between windows will increase capacity. We present Gray codes spanning all possible partial-rank states and using only ``push-to-the-top'' operations. These Gray codes turn out to solve an open combinatorial problem called universal cycle, which is a sequence of integers generating all possible partial permutations.
Resumo:
A general framework for multi-criteria optimal design is presented which is well-suited for automated design of structural systems. A systematic computer-aided optimal design decision process is developed which allows the designer to rapidly evaluate and improve a proposed design by taking into account the major factors of interest related to different aspects such as design, construction, and operation.
The proposed optimal design process requires the selection of the most promising choice of design parameters taken from a large design space, based on an evaluation using specified criteria. The design parameters specify a particular design, and so they relate to member sizes, structural configuration, etc. The evaluation of the design uses performance parameters which may include structural response parameters, risks due to uncertain loads and modeling errors, construction and operating costs, etc. Preference functions are used to implement the design criteria in a "soft" form. These preference functions give a measure of the degree of satisfaction of each design criterion. The overall evaluation measure for a design is built up from the individual measures for each criterion through a preference combination rule. The goal of the optimal design process is to obtain a design that has the highest overall evaluation measure - an optimization problem.
Genetic algorithms are stochastic optimization methods that are based on evolutionary theory. They provide the exploration power necessary to explore high-dimensional search spaces to seek these optimal solutions. Two special genetic algorithms, hGA and vGA, are presented here for continuous and discrete optimization problems, respectively.
The methodology is demonstrated with several examples involving the design of truss and frame systems. These examples are solved by using the proposed hGA and vGA.
Resumo:
Nucleic acids are a useful substrate for engineering at the molecular level. Designing the detailed energetics and kinetics of interactions between nucleic acid strands remains a challenge. Building on previous algorithms to characterize the ensemble of dilute solutions of nucleic acids, we present a design algorithm that allows optimization of structural features and binding energetics of a test tube of interacting nucleic acid strands. We extend this formulation to handle multiple thermodynamic states and combinatorial constraints to allow optimization of pathways of interacting nucleic acids. In both design strategies, low-cost estimates to thermodynamic properties are calculated using hierarchical ensemble decomposition and test tube ensemble focusing. These algorithms are tested on randomized test sets and on example pathways drawn from the molecular programming literature. To analyze the kinetic properties of designed sequences, we describe algorithms to identify dominant species and kinetic rates using coarse-graining at the scale of a small box containing several strands or a large box containing a dilute solution of strands.
Resumo:
Protein structure prediction has remained a major challenge in structural biology for more than half a century. Accelerated and cost efficient sequencing technologies have allowed researchers to sequence new organisms and discover new protein sequences. Novel protein structure prediction technologies will allow researchers to study the structure of proteins and to determine their roles in the underlying biology processes and develop novel therapeutics.
Difficulty of the problem stems from two folds: (a) describing the energy landscape that corresponds to the protein structure, commonly referred to as force field problem; and (b) sampling of the energy landscape, trying to find the lowest energy configuration that is hypothesized to be the native state of the structure in solution. The two problems are interweaved and they have to be solved simultaneously. This thesis is composed of three major contributions. In the first chapter we describe a novel high-resolution protein structure refinement algorithm called GRID. In the second chapter we present REMCGRID, an algorithm for generation of low energy decoy sets. In the third chapter, we present a machine learning approach to ranking decoys by incorporating coarse-grain features of protein structures.
Resumo:
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.
In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:
- For a given number of measurements, can we reliably estimate the true signal?
- If so, how good is the reconstruction as a function of the model parameters?
More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.
Resumo:
This thesis deals with two problems. The first is the determination of λ-designs, combinatorial configurations which are essentially symmetric block designs with the condition that each subset be of the same cardinality negated. We construct an infinite family of such designs from symmetric block designs and obtain some basic results about their structure. These results enable us to solve the problem for λ = 3 and λ = 4. The second problem deals with configurations related to both λ -designs and (ѵ, k, λ)-configurations. We have (n-1) k-subsets of {1, 2, ..., n}, S1, ..., Sn-1 such that Si ∩ Sj is a λ-set for i ≠ j. We obtain specifically the replication numbers of such a design in terms of n, k, and λ with one exceptional class which we determine explicitly. In certain special cases we settle the problem entirely.
Resumo:
Let L be a finite geometric lattice of dimension n, and let w(k) denote the number of elements in L of rank k. Two theorems about the numbers w(k) are proved: first, w(k) ≥ w(1) for k = 2, 3, ..., n-1. Second, w(k) = w(1) if and only if k = n-1 and L is modular. Several corollaries concerning the "matching" of points and dual points are derived from these theorems.
Both theorems can be regarded as a generalization of a theorem of de Bruijn and Erdös concerning ʎ= 1 designs. The second can also be considered as the converse to a special case of Dilworth's theorem on finite modular lattices.
These results are related to two conjectures due to G. -C. Rota. The "unimodality" conjecture states that the w(k)'s form a unimodal sequence. The "Sperner" conjecture states that a set of non-comparable elements in L has cardinality at most max/k {w(k)}. In this thesis, a counterexample to the Sperner conjecture is exhibited.