4 resultados para C.1.4 [Parallel Architectures]
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A presente dissertação descreve, essencialmente, o desenvolvimento de novos métodos de funcionalização de calix[4]pirróis. O uso desses calix[4]pirróis, bem como o de porfirinas e ftalocianinas, como sensores de aniões, incluindo a determinação das suas constantes de afinidade é igualmente discutido. Esta dissertação encontra-se dividida em três partes distintas. Na primeira é feita uma revisão bibliográfica acerca das metodologias de síntese dos calix[4]pirróis, bem como das suas características e aplicações. A segunda parte encontra-se subdividida em diversos pontos de acordo com o tipo de funcionalização realizada nos calix[4]pirróis. No primeiro ponto desta parte encontram-se discutidos a síntese e a caracterização do mesooctametilcalix[ 4]pirrol-2-carbaldeído e do 3-(meso-octametilcalix[4]pirrol-2- il)propenal bem como os resultados obtidos da funcionalização destes aldeídos por reacções de cicloadição 1,3-dipolar. Esses aldeídos foram usados para gerar iletos de azometino, os quais foram “apanhados” com diversos dipolarófilos, tais como o fumaronitrilo, o fumarato de dimetilo, a N-(4- metoxifenil)maleimida, a 1,4-benzoquinona e a 1,4-naftoquinona. Ambos os calixpirróis com grupo formilo deram origem a aductos de cicloadição 1,3- dipolar com rendimentos moderados ou bons, principalmente quando se utilizou fumaronitrilo, fumarato de dimetilo ou N-(4-metoxifenil)maleimida como dipolarófilos. Neste estudo verificou-se que quando as quinonas eram utilizadas como dipolarófilos apenas eram obtidos os cicloaductos do 3-(mesooctametilcalix[ 4]pirrol-2-il)propenal. No segundo ponto descrevem-se as reacções de condensação aldólica e de Knoevenagel do mesooctametilcalix[ 4]pirrol-2-carbaldeído e do 3-(meso-octametilcalix[4]pirrol-2- il)propenal. Verificou-se a ausência de resultados para as reacções de condensação aldólica mas resultados muito satisfatórios para as reacções de Knoevenagel. Foram utilizados como compostos metilénicos activados a indano-1,3-diona, o 1,3-bis(dicianometilideno)indeno, o malononitrilo, o cianoacetato de etilo, o malonato de dietilo e o ácido de Meldrum. No penúltimo ponto encontram-se discutidas as reacções dos dois aldeídos com aminas bem como a sua redução e posterior tentativa de funcionalização dos calixpirróis com grupo hidroxilo. Em ambas as tentativas os resultados foram pouco satisfatórios. No último ponto da segunda parte descrevem-se, pormenorizadamente, os métodos de síntese, purificação e caracterização estrutural dos diversos compostos sintetizados. Na terceira parte são descritos os testes dos novos calix[4]pirróis sintetizados e também de outros derivados tetrapirrólicos, nomeadamente porfirinas e ftalocianinas, com aniões. Os calix[4]pirróis sintetizados demonstraram capacidade de interagir com diferentes aniões, e a sua capacidade de interacção é dependente dos grupos funcionais introduzidos. Verificou-se que os compostos com grupos ciano conjugados com um anel pirrólico do macrociclo apresentam constantes de afinidade mais elevadas para os aniões. A concluir esta dissertação encontra-se uma revisão da literatura sobre a utilização de porfirinas como sensores de aniões. Apresentam-se também os resultados obtidos com duas porfirinas e uma ftalocianina em tal aplicação. As porfirinas testadas apresentam elevadas constantes de afinidade com os iões fluoreto e di-hidrogenofosfato. No caso da ftalocianina verificou-se que esta interage com vários aniões, bem como com metanol e sulfóxido dimetílico, originando soluções de cores muito diferentes.
Resumo:
Compostos do tipo quinolin-4(1H)-ona e quinolina estão presentes em diversas moléculas biologicamente ativas, desde alcalóides naturais a fármacos sintéticos disponíveis comercialmente, sendo que, as quinolin-4(1H)-onas destacam-se essencialmente pela sua atividade antibiótica de largo espectro. Este tipo de compostos têm sido alvo de intensa pesquisa na procura de novas moléculas com potencial aplicação na indústria farmacêutica. Nesta dissertação estabeleceram-se novos métodos de síntese de quinolin-4(1H)- onas e quinolinas e estudou-se a sua reatividade em algumas transformações químicas. No primeiro capítulo apresenta-se uma breve revisão bibliográfica sobre a ocorrência natural, atividade biológica e métodos de síntese de (E)-2- estirilquinolin-4(1H)-onas e acridin-9(10H)-onas. Seguidamente, descreve-se a síntese de novas (E)-2-estirilquinolin-4(1H)-onas a partir da ciclização de (E)- N-(2-acetilfenil)-3-arilacrilamidas, que são obtidas através da reação da 2’- aminoacetofenona com derivados do ácido cinâmico. Neste capítulo estão também descritas as transformações das (E)-2-estirilquinolin-4(1H)-onas em acridin-9(10H)-onas através de reações de Diels-Alder com a Nmetilmaleimida. No entanto, antes de se proceder ao estudo da reação de Diels-Alder foi necessário efetuar a proteção do grupo amina da 4-quinolona para evitar reações secundárias na reação de cicloadição. O estudo da proteção direta do grupo amina das (E)-2-estirilquinolin-4(1H)-onas conduziu à sintese de derivados da 2-estiril-4-metoxiquinolina como produtos secundários. A falta de regiosseletividade na reação de proteção levou a uma alteração da estratégia e as (E)-2-estiril-1-metilquinolin-4(1H)-onas foram sintetizadas a partir da reação de metilação das (E)-N-(2-acetilfenil)-3-arilacrilamidas seguida de ciclização in situ. As reações foram efetuadas também sob irradiação com micro-ondas e verificou-se que a principal vantagem desta tecnologia está relacionada com a diminuição drástica do tempo de reação. O segundo capítulo centra-se no estudo de reações catalisadas por paládio. Apresenta-se uma breve revisão bibliográfica sobre a ocorrência, propriedades biológicas e métodos de síntese de (E)-3-estirilquinolin-4(1H)-onas e furo[3,2- c]quinolinas. Seguidamente, descreve-se a síntese da 3-iodoquinolin-4(1H)- ona a partir da reação da 2’-aminoacetofenona com o formato de metilo, seguida de iodação na posição 3. A 3-iodoquinolin-4(1H)-ona será usada como precursor de novas (E)-3-estirilquinolin-4(1H)-onas através de reações de Heck com derivados do estireno. Verificou-se, no entanto, que a reação conduzia a baixos rendimentos e a estratégia utilizada para contornar esta situação foi a proteção do grupo amina da quinolona de partida, levando assim à sintese de novas (E)-3-estiril-1-metilquinolin-4(1H)-onas em bons resultados. Em alguns casos, as reações de Heck deram origem a derivados do produto secundário ramificado, verificando-se que a reação procede por duas vias mecanísticas. Este estudo foi também efetuado sob irradiação com microondas, no entanto, verificou-se que neste caso esta tecnologia conduz a uma diminuição do tempo, mas também a uma diminuição dos rendimentos. Estudou-se também a reatividade da 3-iodoquinolin-4(1H)-ona com derivados de arilacetileno em reações de Sonogashira, tendo-se estabelecido novas rotas de síntese de 2-arilfuro[3,2-c]quinolinas e, em alguns casos, de 2-aril-3- (feniletinil)furo[3,2-c]quinolinas como produtos secundários. A 3-iodo-1- metilquinolin-4(1H)-ona foi também usada como reagente de partida em reações de Sonogashira com o fenilacetileno levando à formação de novas 2- fenil-5-metilfuro[3,2-c]quinolin-4(5H)-onas. No terceiro capítulo apresenta-se uma breve revisão bibliográfica sobre a ocorrência natural, atividade biológica e métodos de síntese de pirrolo[3,2- c]quinolinas e descreve-se a síntese de novos derivados destes compostos usando a 4-cloro-3-iodoquinolina como sintão. Assim, fez-se reagir a 4-cloro-3- iodoquinolina, preparada a partir da 3-iodoquinolin-4(1H)-ona, em reações de Sonogashira, levando ao estabelecimento de novas rotas de síntese de 3- (ariletinil)-4-cloroquinolinas. Seguidamente estudou-se a reatividade das 3- (ariletinil)-4-cloroquinolinas em reações de substituição nucleofílica com várias aminas, levando à formação das intermediárias aminoquinolinas que após ciclização conduzem à síntese das novas pirrolo[3,2-c]quinolinas. Em alguns casos estes compostos foram também sintetizados num só passo usando como precursor as 3-(ariletinil)-4-cloroquinolinas, embora em piores rendimentos. Neste capítulo é também testada a reatividade da 3-(ariletinil)-4- cloroquinolina e da 4-cloro-3-iodoquinolina com a azida de sódio, tendo-se obtido as 4-aminoquinolinas correspondentes. Todos os novos compostos sintetizados foram caracterizados estruturalmente recorrendo a estudos de espectroscopia de ressonância magnética nuclear (RMN), incluindo espectros de 1H e 13C e estudos bidimensionais de correlação espectroscópica homonuclear e heteronuclear e de efeito nuclear de Overhauser (NOESY). Foram também efectuados, sempre que possível, espectros de massa (EM) e análises elementares ou espectros de massa de alta resolução (EMAR) para todos os novos compostos sintetizados.
Resumo:
Compostos do tipo pirazol e 1,2,3-triazol encontram-se presentes em inúmeras moléculas biologicamente ativas. Muitos fármacos atualmente comercializados ou em fase de estudos clínicos contêm na sua estrutura base núcleos de pirazol ou 1,2,3-triazol. Por isso, estes compostos têm sido alvo de intensa pesquisa na procura de novas moléculas com potenciais aplicações medicinais e agroquímicas. Nesta dissertação são descritas novas vias de síntese de novos compostos do tipo pirazol e 1,2,3-triazol. No primeiro capítulo apresenta-se uma breve revisão bibliográfica sobre a atividade biológica, ocorrência natural e métodos de síntese de pirazóis e seus derivados. O segundo capítulo foca-se na síntese de (E)-2-estiril-3-halo-4H-cromen-4-onas e sua transformação em 3(5)-aril-5(3)-[2-(2-hidroxifenil)-2-oxoetil-1H-pirazóis. Em primeiro lugar faz-se uma revisão bibliográfica sobre as (E)-2-estiril-4H-cromen-4-onas e a sua semelhança estrutural com as flavonas, a sua importância e ocorrência natural e métodos de síntese. São ainda abordadas as metodologias mais utilizadas para a síntese de derivados halogenados de (E)-2-estiril-4H-cromen-4-onas. Seguidamente são apresentados e discutidos os resultados da síntese de (E)-3-bromo-2-estiril-4H-cromen-4-onas através da reação de 5-aril-3-hidroxi-1-(2-hidroxifenil)penta-2,4-dien-1-onas com NBS, sob irradiação com micro-ondas, tendo sido estabelecida uma nova metodologia mais eficiente, rápida e regiosseletiva para a síntese de (E)-3-bromo-2-estiril-4H-cromen-4-onas, na ausência de solvente. São igualmente apresentados os resultados da síntese regiosseletiva de (E)-2-estiril-3-iodo-4H-cromen-4-onas através da reação de 5-aril-3-hidroxi-1-(2-hidroxifenil)penta-2,4-dien-1-onas com NIS e TFA/TFAA/NaOAc. Em ambos os métodos de halogenação desenvolvidos, obtiveram-se como produtos secundários as (E)-2-estiril-4H-cromen-4-onas correspondentes. Seguidamente é apresentado o estudo da reação de (E)-2-estiril-3-halo-4H-cromen-4-onas com hidrato de hidrazina. Ao contrário do esperado, obtiveram-se os 3(5)-aril-5(3)-[2-(2-hidroxifenil)-2-oxoetil-1H-pirazóis através de uma reação de adição conjugada 1,6-, de hidrazina à posição C- da cromona com consequente abertura do anel, seguida de uma adição conjugada 1,4- intramolecular. Estes resultados demonstraram que esta reação segue um mecanismo diferente daquele que está reportado na literatura para a reação de (E)-2-estiril-4H-cromen-4-onas não halogenadas em C-3 com hidrato de hidrazina. No terceiro capítulo apresenta-se uma breve revisão bibliográfica sobre as propriedades, aplicações e metodologias de síntese de 1,2,3-triazóis, dando mais relevância às reações de cicloadição 1,3-dipolar e de “click-chemistry”. Seguidamente descrevem-se os resultados obtidos na reação de (E)-5(3)-estiril-3(5)-(2-hidroxifenil)-1H-pirazóis com a azida de sódio para obtenção de díades pirazol-1,2,3-triazol. No entanto esta reação deu origem a novos 5(3)-(2-aril-2-azidoetil)-3(5)-(2-hidroxifenil)-1H-pirazóis e não às díades pirazol-1,2,3-triazol pretendidas. Como o resultado não foi o esperado, desenvolveu-se outra metodologia de síntese, que envolve, num primeiro, a reação de (E)-2-estiril-4H-cromen-4-onas com azida de sódio, dando origem a 5(4)-aril-4(5)-(cromon-2-il)-1H-1,2,3-triazóis. No passo seguinte, efetuou-se a reação destes compostos com hidrato de hidrazina tendo ocorrido a formação das diades 5(4)-aril-4(5)-[3(5)-(2-hidroxifenil)-1H-pirazol-5(3)-il]-1H-1,2,3-triazol pretendidas. No quarto capítulo, estudou-se a reatividade de (E)-5(3)-estiril-3(5)-(2-hidroxifenil)-1H-pirazóis em reações de iodação com vista à obtenção de 4-iodo-1H-pirazóis. Apresenta-se uma breve revisão bibliográfica sobre os diferentes métodos descritos na literatura para a iodação de compostos heterocíclicos aromáticos, nomeadamente para a obtenção de 4-iodo-1H-pirazóis. Dos vários sistemas de iodação testados, o sistema oxidativo I2/CAN foi o que deu melhores resultados na iodação dos (E)-5(3)-estiril-3(5)-(2-hidroxifenil)-1H-pirazóis. Este método permitiu iodar a posição C-4 do núcleo de pirazol apenas para os derivados que possuem o grupo nitro ou o átomo de cloro no anel do grupo estirilo, obtendo-se o 3(5)-(2-hidroxifenil)-4-iodo-5(3)-(4-nitrofenil)vinil-1H-pirazol e o 5(3)-(4-clorofenil)vinil)-3(5)-(2-hidroxi-5-iodofenil)-4-iodo-1H-pirazol; no entanto, para os restantes derivados, verificou-se apenas a iodação nas posições ativadas do anel fenólico. Todos os novos compostos sintetizados foram caraterizados estruturalmente recorrendo a estudos de espetroscopia de ressonância magnética nuclear (RMN) mono e bidimensionais. Sempre que possível, para uma caraterização estrutural mais completa, foram efetuados espetros de massa (EM) e análises elementares ou espetros de massa de alta resolução (EMAR) para todos os novos compostos sintetizados. Finalmente são apresentadas as conclusões gerais deste trabalho e perspetivas futuras.
Resumo:
Esta dissertação está dividida em duas partes. Na primeira parte reportam-se métodos de síntese de (E)-3-estirilflavonas e (E)/(Z)-2-aril- 4-cloro-3-estiril-2H-cromenos e estudos de ciclização das (E)-3- estirilflavonas em 5-arilbenzo[c]xantonas. Na segunda parte desenvolveram-se novas rotas de síntese de (E)-2-aril-3-estiril-4- quinolonas e posterior transformação em 5-fenil-12- metilbenzo[c]acridonas e 2,4-diarilfuro[3,2-c]quinolinas. Nesta parte estudou-se também a transformação de 2-aril-4-cloro-1,2-dihidroquinolina- 1,3-dicarbaldeídos em (E)/(Z)-2-aril-4-cloro-3-estiril-1,2- di-hidroquinolina-1-carbaldeídos. A síntese de novos derivados de (E)-3-estirilflavonas, abordada na primeira parte desta dissertação, envolveu estudos de otimização da reação de bromação seguida de ciclização de 3-aril-1-(2- hidroxiaril)propano-1,3-dionas/3-aril-3-hidroxi-1-(2-hidroxiaril)prop-2- en-1-onas em 3-bromoflavonas e o desenvolvimento de uma nova rota de síntese de 3-metilflavonas. As 3-metilflavonas foram sujeitas a bromação e seguidamente transformadas em sais de fosfónio antes de serem utilizadas na síntese de (E)-3-estirilflavonas via reação de Wittig. As 3-bromoflavonas foram também usadas na síntese de (E)-3- estirilflavonas via reação de Heck. A síntese de novos derivados de (E)/(Z)-2-aril-4-cloro-3-estiril-2H-cromenos, via reação de Wittig, envolveu a síntese e formilação de flavanonas. A última transformação reportada na primeira parte desta dissertação é a síntese de 5-arilbenzo[c]xantonas por reação de eletrociclização seguida de oxidação de (E)-3-estirilflavonas. Na segunda parte desta dissertação são estudadas duas vias de síntese de 2-aril-1-metil-4-quinolonas. A primeira via de síntese envolve a síntese de N-(2-acetilfenil)benzamidas, sua ciclização em 4-quinolonas seguida de metilação destas. A segunda via envolve a metilação e ciclização de N-(2-acetilfenil)benzamidas obtendo-se, num só passo, as 2-aril-1-metil-4-quinolonas. Posterior iodação das 2-aril-1-metil-4- quinolonas e subsequente reação de Heck das 2-aril-3-iodo-1-metil-4- quinolonas com estirenos comerciais possibilitaram a síntese de (E)-2- aril-3-estiril-1-metil-4-quinolonas. Estudos de eletrociclização seguidos de oxidação das (E)-2-aril-3-estiril-1-metil-4-quinolonas utilizando uma lâmpada de UV de mercúrio de alta pressão possibilitou a síntese de 5- fenil-12-metilbenzo[c]acridonas, enquanto que o aquecimento em refluxo de 1,2,4-triclorobenzeno deu origem a 2,4-diarilfuro[3,2- c]quinolinas. Nesta segunda parte aborda-se também a síntese de 2-aril-4-cloro-1,2- di-hidroquinolina-1,3-dicarbaldeídos, a partir da formilação de 2-aril- 2,3-di-hidro-4-quinolonas e a sua transformação em (E)/(Z)-2-aril-4- cloro-3-estiril-1,2-di-hidroquinolina-1-carbaldeídos por reação de Wittig. Todos os compostos sintetizados foram caracterizados por espectroscopia de ressonância magnética nuclear de protão e carbono 13C, espectros bidimensionais de correlação heteronuclear (HMBC e HSQC) e, nalguns casos espectros de efeito nuclear Overhauser (NOESY). Os novos produtos foram igualmente caracterizados por espectrometria de massa e sempre que possível análise elementar ou espectrometria de massa de alta resolução.