7 resultados para Artificial Information Models
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A informação digitalizada e nado digital, fruto do avanço tecnológico proporcionado pelas Tecnologias da Informação e Comunicação (TIC), bem como da filosofia participativa da Web 2.0, conduziu à necessidade de reflexão sobre a capacidade de os modelos atuais, para a organização e representação da informação, de responder às necessidades info-comunicacionais assim como o acesso à informação eletrónica pelos utilizadores em Instituições de Memória. O presente trabalho de investigação tem como objetivo a conceção e avaliação de um modelo genérico normativo e harmonizador para a organização e representação da informação eletrónica, num sistema de informação para o uso de utilizadores e profissionais da informação, no contexto atual colaborativo e participativo. A definição dos objetivos propostos teve por base o estudo e análise qualitativa das normas adotadas pelas instituições de memória, para os registos de autoridade, bibliográfico e formatos de representação. Após a concetualização, foi desenvolvido e avaliado o protótipo, essencialmente, pela análise qualitativa dos dados obtidos a partir de testes à recuperação da informação. A experiência decorreu num ambiente laboratorial onde foram realizados testes, entrevistas e inquéritos por questionário. A análise cruzada dos resultados, obtida pela triangulação dos dados recolhidos através das várias fontes, permitiu concluir que tanto os utilizadores como os profissionais da informação consideraram muito interessante a integração da harmonização normativa refletida nos vários módulos, a integração de serviços/ferramentas comunicacionais e a utilização da componente participativa/colaborativa da plataforma privilegiando a Wiki, seguida dos Comentários, Tags, Forum de discussão e E-mail.
Resumo:
As técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.
Resumo:
The exponential growth of the world population has led to an increase of settlements often located in areas prone to natural disasters, including earthquakes. Consequently, despite the important advances in the field of natural catastrophes modelling and risk mitigation actions, the overall human losses have continued to increase and unprecedented economic losses have been registered. In the research work presented herein, various areas of earthquake engineering and seismology are thoroughly investigated, and a case study application for mainland Portugal is performed. Seismic risk assessment is a critical link in the reduction of casualties and damages due to earthquakes. Recognition of this relation has led to a rapid rise in demand for accurate, reliable and flexible numerical tools and software. In the present work, an open-source platform for seismic hazard and risk assessment is developed. This software is capable of computing the distribution of losses or damage for an earthquake scenario (deterministic event-based) or earthquake losses due to all the possible seismic events that might occur within a region for a given interval of time (probabilistic event-based). This effort has been developed following an open and transparent philosophy and therefore, it is available to any individual or institution. The estimation of the seismic risk depends mainly on three components: seismic hazard, exposure and vulnerability. The latter component assumes special importance, as by intervening with appropriate retrofitting solutions, it may be possible to decrease directly the seismic risk. The employment of analytical methodologies is fundamental in the assessment of structural vulnerability, particularly in regions where post-earthquake building damage might not be available. Several common methodologies are investigated, and conclusions are yielded regarding the method that can provide an optimal balance between accuracy and computational effort. In addition, a simplified approach based on the displacement-based earthquake loss assessment (DBELA) is proposed, which allows for the rapid estimation of fragility curves, considering a wide spectrum of uncertainties. A novel vulnerability model for the reinforced concrete building stock in Portugal is proposed in this work, using statistical information collected from hundreds of real buildings. An analytical approach based on nonlinear time history analysis is adopted and the impact of a set of key parameters investigated, including the damage state criteria and the chosen intensity measure type. A comprehensive review of previous studies that contributed to the understanding of the seismic hazard and risk for Portugal is presented. An existing seismic source model was employed with recently proposed attenuation models to calculate probabilistic seismic hazard throughout the territory. The latter results are combined with information from the 2011 Building Census and the aforementioned vulnerability model to estimate economic loss maps for a return period of 475 years. These losses are disaggregated across the different building typologies and conclusions are yielded regarding the type of construction more vulnerable to seismic activity.
Resumo:
Apesar das recentes inovações tecnológicas, o setor dos transportes continua a exercer impactes significativos sobre a economia e o ambiente. Com efeito, o sucesso na redução das emissões neste setor tem sido inferior ao desejável. Isto deve-se a diferentes fatores como a dispersão urbana e a existência de diversos obstáculos à penetração no mercado de tecnologias mais limpas. Consequentemente, a estratégia “Europa 2020” evidencia a necessidade de melhorar a eficiência no uso das atuais infraestruturas rodoviárias. Neste contexto, surge como principal objetivo deste trabalho, a melhoria da compreensão de como uma escolha de rota adequada pode contribuir para a redução de emissões sob diferentes circunstâncias espaciais e temporais. Simultaneamente, pretende-se avaliar diferentes estratégias de gestão de tráfego, nomeadamente o seu potencial ao nível do desempenho e da eficiência energética e ambiental. A integração de métodos empíricos e analíticos para avaliação do impacto de diferentes estratégias de otimização de tráfego nas emissões de CO2 e de poluentes locais constitui uma das principais contribuições deste trabalho. Esta tese divide-se em duas componentes principais. A primeira, predominantemente empírica, baseou-se na utilização de veículos equipados com um dispositivo GPS data logger para recolha de dados de dinâmica de circulação necessários ao cálculo de emissões. Foram percorridos aproximadamente 13200 km em várias rotas com escalas e características distintas: área urbana (Aveiro), área metropolitana (Hampton Roads, VA) e um corredor interurbano (Porto-Aveiro). A segunda parte, predominantemente analítica, baseou-se na aplicação de uma plataforma integrada de simulação de tráfego e emissões. Com base nesta plataforma, foram desenvolvidas funções de desempenho associadas a vários segmentos das redes estudadas, que por sua vez foram aplicadas em modelos de alocação de tráfego. Os resultados de ambas as perspetivas demonstraram que o consumo de combustível e emissões podem ser significativamente minimizados através de escolhas apropriadas de rota e sistemas avançados de gestão de tráfego. Empiricamente demonstrou-se que a seleção de uma rota adequada pode contribuir para uma redução significativa de emissões. Foram identificadas reduções potenciais de emissões de CO2 até 25% e de poluentes locais até 60%. Através da aplicação de modelos de tráfego demonstrou-se que é possível reduzir significativamente os custos ambientais relacionados com o tráfego (até 30%), através da alteração da distribuição dos fluxos ao longo de um corredor com quatro rotas alternativas. Contudo, apesar dos resultados positivos relativamente ao potencial para a redução de emissões com base em seleções de rotas adequadas, foram identificadas algumas situações de compromisso e/ou condicionantes que devem ser consideradas em futuros sistemas de eco navegação. Entre essas condicionantes importa salientar que: i) a minimização de diferentes poluentes pode implicar diferentes estratégias de navegação, ii) a minimização da emissão de poluentes, frequentemente envolve a escolha de rotas urbanas (em áreas densamente povoadas), iii) para níveis mais elevados de penetração de dispositivos de eco-navegação, os impactos ambientais em todo o sistema podem ser maiores do que se os condutores fossem orientados por dispositivos tradicionais focados na minimização do tempo de viagem. Com este trabalho demonstrou-se que as estratégias de gestão de tráfego com o intuito da minimização das emissões de CO2 são compatíveis com a minimização do tempo de viagem. Por outro lado, a minimização de poluentes locais pode levar a um aumento considerável do tempo de viagem. No entanto, dada a tendência de redução nos fatores de emissão dos poluentes locais, é expectável que estes objetivos contraditórios tendam a ser minimizados a médio prazo. Afigura-se um elevado potencial de aplicação da metodologia desenvolvida, seja através da utilização de dispositivos móveis, sistemas de comunicação entre infraestruturas e veículos e outros sistemas avançados de gestão de tráfego.
Resumo:
The rapid evolution and proliferation of a world-wide computerized network, the Internet, resulted in an overwhelming and constantly growing amount of publicly available data and information, a fact that was also verified in biomedicine. However, the lack of structure of textual data inhibits its direct processing by computational solutions. Information extraction is the task of text mining that intends to automatically collect information from unstructured text data sources. The goal of the work described in this thesis was to build innovative solutions for biomedical information extraction from scientific literature, through the development of simple software artifacts for developers and biocurators, delivering more accurate, usable and faster results. We started by tackling named entity recognition - a crucial initial task - with the development of Gimli, a machine-learning-based solution that follows an incremental approach to optimize extracted linguistic characteristics for each concept type. Afterwards, Totum was built to harmonize concept names provided by heterogeneous systems, delivering a robust solution with improved performance results. Such approach takes advantage of heterogenous corpora to deliver cross-corpus harmonization that is not constrained to specific characteristics. Since previous solutions do not provide links to knowledge bases, Neji was built to streamline the development of complex and custom solutions for biomedical concept name recognition and normalization. This was achieved through a modular and flexible framework focused on speed and performance, integrating a large amount of processing modules optimized for the biomedical domain. To offer on-demand heterogenous biomedical concept identification, we developed BeCAS, a web application, service and widget. We also tackled relation mining by developing TrigNER, a machine-learning-based solution for biomedical event trigger recognition, which applies an automatic algorithm to obtain the best linguistic features and model parameters for each event type. Finally, in order to assist biocurators, Egas was developed to support rapid, interactive and real-time collaborative curation of biomedical documents, through manual and automatic in-line annotation of concepts and relations. Overall, the research work presented in this thesis contributed to a more accurate update of current biomedical knowledge bases, towards improved hypothesis generation and knowledge discovery.
Resumo:
The main objective of this work was to monitor a set of physical-chemical properties of heavy oil procedural streams through nuclear magnetic resonance spectroscopy, in order to propose an analysis procedure and online data processing for process control. Different statistical methods which allow to relate the results obtained by nuclear magnetic resonance spectroscopy with the results obtained by the conventional standard methods during the characterization of the different streams, have been implemented in order to develop models for predicting these same properties. The real-time knowledge of these physical-chemical properties of petroleum fractions is very important for enhancing refinery operations, ensuring technically, economically and environmentally proper refinery operations. The first part of this work involved the determination of many physical-chemical properties, at Matosinhos refinery, by following some standard methods important to evaluate and characterize light vacuum gas oil, heavy vacuum gas oil and fuel oil fractions. Kinematic viscosity, density, sulfur content, flash point, carbon residue, P-value and atmospheric and vacuum distillations were the properties analysed. Besides the analysis by using the standard methods, the same samples were analysed by nuclear magnetic resonance spectroscopy. The second part of this work was related to the application of multivariate statistical methods, which correlate the physical-chemical properties with the quantitative information acquired by nuclear magnetic resonance spectroscopy. Several methods were applied, including principal component analysis, principal component regression, partial least squares and artificial neural networks. Principal component analysis was used to reduce the number of predictive variables and to transform them into new variables, the principal components. These principal components were used as inputs of the principal component regression and artificial neural networks models. For the partial least squares model, the original data was used as input. Taking into account the performance of the develop models, by analysing selected statistical performance indexes, it was possible to conclude that principal component regression lead to worse performances. When applying the partial least squares and artificial neural networks models better results were achieved. However, it was with the artificial neural networks model that better predictions were obtained for almost of the properties analysed. With reference to the results obtained, it was possible to conclude that nuclear magnetic resonance spectroscopy combined with multivariate statistical methods can be used to predict physical-chemical properties of petroleum fractions. It has been shown that this technique can be considered a potential alternative to the conventional standard methods having obtained very promising results.
Resumo:
When developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.