2 resultados para 2D ELECTRON-GAS
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Being of high relevance for many technological applications, the solubility of sour gases in solvents of low volatility is still poorly described and understood. Aiming at purifying natural gas streams, the present work contributes for a more detailed knowledge and better understanding of the solubility of sour gases in these fluids, in particularly on ionic liquids. A new apparatus, developed and validated specially for phase equilibria studies of this type of systems, allowed the study of the solvent basicity, molecular weight and polarity influence on the absorption of carbon dioxide and methane. The non ideality of carbon dioxide solutions in ionic liquids and other low volatile solvents, with which carbon dioxide is known to form electron donor-acceptor complexes, is discussed, allowing the development of a correlation able to describe the carbon dioxide solubility in low volatile solvents. Furthermore, the non ideality of solutions of light compounds, such as SO2, NH3 and H2S, in ionic liquids is also investigated and shown to present negative deviations to the ideality in the liquid phase, that can be predicted by the Flory-Huggins model. For last, the effect of the ionic liquid polarity, described through the Kamlet-Taft parameters, on the CO2/CH4 and H2S/CH4 selectivities is also evaluated and shown to stand as a viable tool for the selection of ionic liquids with enhanced selectivities.
Resumo:
During the last few decades, Metal-Organic Frameworks (MOFs), also known as Coordination Polymers, have attracted worldwide research attentions due to their incremented fascinating architectures and unique properties. These multidimensional materials have been potential applications in distinct areas: gas storage and separation, ion exchange, catalysis, magnetism, in optical sensors, among several others. The MOF research group at the University of Aveiro has prepared MOFs from the combination of phosphonate organic primary building units (PBUs) with, mainly, lanthanides. This thesis documents the last findings in this area involving the synthesis of multidimensional MOFs based on four di- or tripodal phosphonates ligands. The organic PBUs were designed and prepared by selecting and optimizing the best reaction conditions and synthetic routes. The self-assembly between phosphonate PBUs and rare-earths cations led to the formation of several 1D, 2D and 3D families of isotypical MOFs. The preparation of these materials was achieved by using distinct synthetic approaches: hydro(solvo)thermal, microwave- and ultrasound-assisted, one-pot and ionothermal synthesis. The selection of the organic PBUs showed to have an important role in the final architectures: while flexible phosphonate ligands afforded 1D, 2D and dense 3D structures, a large and rigid organic PBU isolated a porous 3D MOF. The crystal structure of these materials was successfully unveiled by powder or single-crystal X-ray diffraction. All multidimensional MOFs were characterized by standard solid-state techniques (FT-IR, electron microscopy (SEM and EDS), solid-state NMR, elemental and thermogravimetric analysis). Some MOF materials exhibited remarkable thermal stability and robustness up to ca. 400 ºC. The intrinsic properties of some MOFs were investigated. Photoluminescence studies revealed that the selected organic PBUs are suitable sensitizers of Tb3+ leading to the isolation of intense green-emitting materials. The suppression of the O−H quenchers by deuteration or dehydration processes improves substantially the photoluminescence of the optically-active Eu3+-based materials. Some MOF materials exhibited high heterogeneous catalytic activity and excellent regioselectivity in the ring-opening reaction of styrene oxide (PhEtO) with methanol (100% conversion of PhEtO at 55 ºC for 30 min). The porous MOF material was employed in gas separation processes. This compound showed the ability to separate propane over propylene. The ionexchanged form of this material (containing K+ cations into its network) exhibited higher affinity for CO2 being capable to separate acetylene over this environment non-friendly gas.