18 resultados para Géneros
Resumo:
Durante a sua vida Frederico de Freitas abordou praticamente todos os géneros musicais, demonstrando uma imensa e notória versatilidade tanto na música erudita como na não erudita. O repertório para canto e piano representa uma parte substancial da sua obra vocal e, apesar de menos divulgado, não pode deixar de se considerar de grande importância. É precisamente neste género que mais se evidencia a versatilidade do seu estilo composicional. Este repertório abrange, assim, os géneros erudito e ligeiro, ou popular, pelo que as suas canções refletem a facilidade com que se movia de um meio para outro. Enquanto investigador, os estudos que realizou sobre música medieval portuguesa, o número elevadíssimo de recolhas de melodias tradicionais portuguesas que fez ao longo da vida e as investigações que realizou sobre o fado deram origem, paralelamente à composição de canções eruditas, a harmonizações de melodias medievais, a arranjos de temas na música tradicional e à composição de fados. Do ponto de vista interpretativo, a diversidade de estilos presentes nas canções de Frederico de Freitas exige do cantor lírico uma versatilidade e capacidade de se adaptar, ainda que mantendo a matiz da sua formação erudita, ao estilo próprio de cada canção. Com vista a uma interpretação estilística e vocalmente adequada, e por representarem um universo tão diferenciado, esta tese de doutoramento centra a sua atenção na problemática da vocalidade das suas canções.
Resumo:
Portugal has strong musical traditions, which have been perpetrated by decades through folkloristic activities. In folk groups from Alto Minho (north of Portugal), folk singing is mostly performed by cantadeiras, amateur female solo singers who learn this style orally. Their vocal characteristics are distinctive when compared with other regions of the country; however, deep understanding of these vocal practices is still missing. The present work aims at studying Alto Minho cantadeira’s vocal performance in a multidimensional perspective, envisioning social, cultural and physiological understanding of this musical style. Thus, qualitative and quantitative data analyses were carried out, to: (i) describe current performance practices, (ii) explore existent perceptions about most relevant voice features in this region, (iii) investigate physiological and acoustic properties of this style, and (iv) compare this style of singing with other non-classical singing styles of other countries. Dataset gathered involved: 78 groups whose members were telephone interviewed, 13 directors who were asked to fill in a questionnaire on performance practices, 1 cantadeira in a pilot study, 16 cantadeiras in preliminary voice recordings, 77 folk group members in listening tests, and 10 cantadeiras in multichannel recordings, including audio, ELG, air flow and intra-oral pressure signals. Data were analysed through thematic content analysis, descriptive and inferential statistics, hierarchical principal components, and multivariate linear regression models. Most representative voices have a high pitched and loud voice, with a bright timbre, predominance of chest register without excessive effort, and good text intelligibility with regional accent. High representativeness levels were obtained by few cantadeiras; these sing with high levels of subglottal pressure and vocal fold contact quotient, predominance of high spectrum energy and vocal loudness, corroborating indications of prevalence of pressed phonation. These vocal characteristics resemble belting in musical theatre and share similarities with country (USA) and ojikanje (Croatia) singing. Strategies that may contribute to the preservation of this type of singing and the vocal health of current cantadeiras are discussed, pointing at the direction of continuous education among folk groups, following practices that are already adopted elsewhere in Europe.
Resumo:
Rapid and specific detection of foodborne bacteria that can cause food spoilage or illness associated to its consumption is an increasingly important task in food industry. Bacterial detection, identification, and classification are generally performed using traditional methods based on biochemical or serological tests and the molecular methods based on DNA or RNA fingerprints. However, these methodologies are expensive, time consuming and laborious. Infrared spectroscopy is a reliable, rapid, and economic technique which could be explored as a tool for bacterial analysis in the food industry. In this thesis it was evaluated the potential of IR spectroscopy to study the bacterial quality of foods. In Chapter 2, it was developed a calibration model that successfully allowed to predict the bacterial concentration of naturally contaminated cooked ham samples kept at refrigeration temperature during 8 days. In this part, it was developed the methodology that allowed the best reproducibility of spectra from bacteria colonies with minimal sample preparation, which was used in the subsequent work. Several attempts trying different resolutions and number of scans in the IR were made. A spectral resolution of 4 cm-1, with 32 scans were the settings that allowed the best results. Subsequently, in Chapter 3, it was made an attempt to identify 22 different foodborne bacterial genera/species using IR spectroscopy coupled with multivariate analysis. The principal component analysis, used as an exploratory technique, allowed to form distinct groups, each one corresponding to a different genus, in most of the cases. Then, a hierarchical cluster analysis was performed to further analyse the group formation and the possibility of distinction between species of the same bacterial genus. It was observed that IR spectroscopy not only is suitable to the distinction of the different genera, but also to differentiate species of the same genus, with the simultaneous use of principal component analysis and cluster analysis techniques. The utilization of IR spectroscopy and multivariate statistical analysis were also investigated in Chapter 4, in order to confirm the presence of Listeria monocytogenes and Salmonella spp. isolated from contaminated foods, after growth in selective medium. This would allow to substitute the traditional biochemical and serological methods that are used to confirm these pathogens and that delay the obtainment of the results up to 2 days. The obtained results allowed the distinction of 3 different Listeria species and the distinction of Salmonella spp. from other bacteria that can be mistaken with them. Finally, in chapter 5, high pressure processing, an emerging methodology that permits to produce microbiologically safe foods and extend their shelf-life, was applied to 12 foodborne bacteria to determine their resistance and the effects of pressure in cells. A treatment of 300 MPa, during 15 minutes at room temperature was applied. Gram-negative bacteria were inactivated to undetectable levels and Gram-positive showed different resistances. Bacillus cereus and Staphylococcus aureus decreased only 2 logs and Listeria innocua decreased about 5 logs. IR spectroscopy was performed in bacterial colonies before and after HPP in order to investigate the alterations of the cellular compounds. It was found that high pressure alters bands assigned to some cellular components as proteins, lipids, oligopolysaccharides, phosphate groups from the cell wall and nucleic acids, suggesting disruption of the cell envelopes. In this work, bacterial quantification and classification, as well as assessment of cellular compounds modification with high pressure processing were successfully performed. Taking this into account, it was showed that IR spectroscopy is a very promising technique to analyse bacteria in a simple and inexpensive manner.